
Who Moved My Servers?

Who Moved My Servers?

First published in Great Britain in 2019 by Rethink Press
(www.rethinkpress.com)

© Copyright Neil Millard

All rights reserved. No part of this publication may be
reproduced, stored in or introduced into a retrieval system,
or transmitted, in any form, or by any means (electronic,
mechanical, photocopying, recording or otherwise) without
the prior written permission of the publisher.

The right of Neil Millard to be identified as the author of this
work has been asserted by him in accordance with the Copy-
right, Designs and Patents Act 1988.

This book is sold subject to the condition that it shall not,
by way of trade or otherwise, be lent, resold, hired out, or
otherwise circulated without the publisher’s prior consent
in any form of binding or cover other than that in which it is
published and without a similar condition including this con-
dition being imposed on the subsequent purchaser.

Cover image © Shutterstock/Marish

http://www.rethinkpress.com

Contents

SECTION 1: MAINFRAMES TO CLOUDS� 1

Introduction� 3

ONE: whoami� 7

TWO: What Is Cloud?� 19

On-demand self-service� 21

Rapid elasticity� 25

Measured service� 27

THREE: What Is DevOps?� 31

Iterative� 34

Communication� 35

Adaptation� 35

Quality� 36

DevOps teams� 39

SECTION 2: WHY CLOUD?� 47

FOUR: Cloud Infrastructure Solutions� 49

Application designed for cloud� 50

Application design for cloud operations� 59

Application high availability and performance� 71

FIVE: Problems� 75

Disaster recovery� 76

SECTION 3: SOLVING CLOUD PROBLEMS� 89

SIX: System Development� 91

Inception� 92

DevOps environments� 93

Discovery, research and development� 96

Production� 97

Maintenance� 97

Decommission� 98

SEVEN: Automation� 113

Building servers� 117

Bootstrap and base image� 121

Install packages� 122

Configure� 123

Serve� 124

Monitor� 124

EIGHT: Scaling Infrastructure and Applications� 137

Scaling up� 138

Scaling out� 139

Scaling in� 140

Application load balancing� 141

Application auto scaling� 141

NINE: Cost Control� 147

Unused resources� 148

AWS application design� 149

EC2 vs. Lambda� 149

Server instance sizing� 153

Reserved resources� 153

Summary� 155

Appendix: Key Concepts� 157

The Author� 167

SECTION 1

MAINFRAMES TO CLOUDS

3

Introduction

My idea of utopia is the choice to do what you
want, when you want. By leveraging automation,

I believe everything can be provided for in abundance.
Food farmed or created. Housing everywhere. Work?
Not really heard of. After all, if everyone has food and
accommodation provided, most of your income is no
longer needed.

Let’s have fun, pursue true happiness and fulfilment.
Play games, read books, study history or philosophy.

Maybe the robots can take over the world, and we can
live in a zoo, where the robots feed us and allow us to
do whatever we want and go wherever we want.

Who Moved My Servers?

4

There are many dystopian views too, and as a positive
person, I choose to focus on the utopian. If you want
a taste of what this might look like, then I encourage
you to put the Culture series of books by Iain M Banks
on your reading list.

I have four steps to help us deliver this value. Design,
automation, scaling and data.

Design is sometimes called a minimum viable product,
and isn’t the long and time-consuming step that it once
was. Agile says we need to do just enough design to
start delivering value.

Automation is where we build what we have designed,
and perhaps revisit the design and build to improve
the automation in an iterative way.

Scaling is where the biggest excitement and the biggest
headaches of a product or start-up lay. Having a small
perfectly formed pizza is good to start with, but not
quite going to cut it if you want to feed an army of
conference delegates in one sitting.

Data and keeping it safe is crucial. It’s the most valu-
able thing we have as individuals other than our time.

Introduction

5

Ensuring it doesn’t get lost or stolen, either through
hardware failure or theft, must be taken seriously.

Perhaps that is a bit deep for the first page of this book,
so let me introduce myself.

7

ONE

whoami

These days I’m often described as a DevOps engineer,
and it’s been quite a journey from where I started

out. My first love is programming, and it was my first
experience with computers in the 80s. Programming
basic games on a ZX Spectrum, then an Amiga using
machine code.

At thirteen I moved to upper school and found some
acceptance with four fellow geeks – a friendship circle
that I still enjoy and am very grateful for today.

Working a paper-round allowed me to save up enough
to buy a second-hand ZX Spectrum, and after that
computer games and magazines. In these magazines

Who Moved My Servers?

8

you could find listings for computer programs and
games. Yes, pages and pages of code to type in and
save to cassette tape. While laborious, this process effec-
tively taught me how others coded. All in ZX Spectrum
BASIC, line by line, including lots of numbers that I
didn’t quite understand, but seemed to be related to
graphics on the screen.

Before long I was teaching myself machine code for the
Zilog Z80 CPU, and with the help of Romantic Robot’s
Multiface, I could decode (to some extent) the games
I loved playing. With companies like Codemasters in
their infancy, the dream was to create a game and retire
on the proceeds.

I lost myself in computer programming – and listening
to Kylie Minogue in my bedroom.

While I was working jobs at college, I became the proud
owner of a Commodore Amiga A500, which meant I
had traded up to programming the Motorola 68000
CPU with the luxury of floppy disks instead of tapes.
I learned about everything I could. At this point that
consisted of 3D graphics, the Amiga’s Blitter chip affec-
tionally called Fat Agnus and hardware level floppy
disk routines.

Whoami

9

While still at college I had learned about connecting
computers across phone lines using modems. These
devices allowed your computer to connect to another
computer and exchange files, messages and read infor-
mation. These host computers were known as Bulletin
Board Systems (BBSs), and were usually run by hobby-
ists as a way of connecting communities of like-minded
geeks together. As only one person could connect at a
time, the more popular BBSs would not let you connect
unless you had the latest modems running at the fastest
connection speeds.

The BBSs I connected to provided more computer code
to look through, as well as contributed to the commu-
nity by sharing mine in the way of producing computer
demos. These small programs would look like short
videos of colours, patterns, graphics, music and most
important, the scroller. The scroller is a continuous line
of text making up sentences which you would read
while watching the contortions of shapes and colour
bouncing around to the music.

This gave me a sense of belonging and community, and
introduced me to a few good eggs that encouraged my
programming journey.

Who Moved My Servers?

10

When I finished college, I bought an Amiga 2000, the
much larger cousin of the A500. I used this to set up my
own BBS, which was great as the files and code would
then come to me, rather than the long hours required to
connect and download from the other BBSs. However,
this being 1994, the internet was about to make itself
known. FidoNet, unlike most BBSs using a hub and
spoke system, used a store and forward system. In this
way, a network of servers would connect to each other
on demand or on a schedule. This was a much more
efficient way of sharing information, and gave access
to some of UseNet, another very popular forum and
messaging platform.

This system also enabled emails. You could create an
email, upload it to your nearest FidoNet node, and the
network would do the rest. With dialup access to the
internet, the BBS was becoming endangered, as was
the Amiga as my chosen platform. It wouldn’t be long
before I was hosting websites and email servers on the
internet instead.

In 1995 I got the chance to start my IT career as a trainee
technician. Rather than joining as a programmer, I
secured a job as a trainee. This was on the hardware
track and not the software track as I had dreamed.
My focus turned to hardware: IBM compatible PCs

Whoami

11

and EPoS shop checkouts. Most of my day was spent
driving parts around the beautiful West Country. This
was broken up with short bursts of installing, replacing
and in some cases repairing tills with a soldering iron.

As a trainee, I was taught about printers, hard drives,
replacing power supplies and later about installing
software to new computers in the offices of Railtrack
and Wessex Water. After two years I graduated from
trainee status to technician, together with a nice raise
and a new company car.

During the next two years my understanding of client
operating systems grew, moving from DOS 6 to Win-
dows 95 and even Windows NT 4. I learned a great deal
about networking, TCP/IP, Token Ring, Ethernet, and
structured cabling, sometimes called CAT5. However, I
was frustrated that I couldn’t get involved with setting
up servers, and the thought of programming was never
far from my mind.

After a few years in desktop support, I was experienced
enough to move on to configuring and supporting
servers. The traditional infrastructure role, looking
after physical servers in a data centre, together with all
the bits that hold it together: networks, storage arrays,
Fibre, etc.

Who Moved My Servers?

12

Then Sanctuary Housing invited me to join their infra-
structure team.

The IT department was in three groups: the helpdesk,
business application support, and infrastructure. Dur-
ing my six years at Sanctuary, I would spend time in
all three, but at the start I was in the infrastructure
team. The infrastructure team was further split into
four teams: network, client, security and server. I had
the title of Server Technician.

As I arrived on the first day, there was a chair, a desk
and a box. My first job was to build my desktop PC
that was to serve me for the next two years. This was
a slightly automated affair once I’d plugged it in, as
there was already a PXE server to load Windows and
the standard software. My next challenge was to build
a Citrix server. At Sanctuary Housing, most IT users not
in head office accessed the systems via Wyse Terminal
connected to a Citrix server. This put a never-ending
demand on new Citrix servers as the company grew in
turnover and staff.

Citrix server number forty-seven. That was what I was
building. Another team member that started a week
later than I did was building server forty-eight. This
first build was interesting, but boring and repetitive

Whoami

13

after the third or fourth time. Given this was one of
the main activities initially, it was a lot of time spent
on a process that had so many manual steps. As time
grew, we refined the process so that it was easy to build
Citrix servers, often ten at a time. Blade technology
was coming into its own, and HP provided a chassis
that could house sixteen quad processor servers. Each
of these would have the Xen Hypervisor installed to
enable virtual servers to run on it, and this in turn
would host about ten Citrix servers. To build these
manually would have taken a lot of time and resulted
in many mistakes. Automation of this process was key
to support the growth of the organisation.

Within the Microsoft world, there are a suite of prod-
ucts under the banner of System Center. This started off
with Configuration Manager, which is a configuration
management system. The equivalent in the UNIX or
Linux space is Puppet or Chef. Configuration man-
agement enables you to build and deploy computer
systems from a single console. This includes building
the computer right through to installing software and
keeping that software updated with the desired ver-
sions of programs.

The System Center suite had the addition of Micro-
soft Operations Manager, commonly called MOM.

Who Moved My Servers?

14

This system allows rules to run against your man-
aged machines (mostly servers), to check the status
and performance of the applications, including the
machine they run on. Should the system break any
rules or breach a performance threshold, alerts are
raised to inform support personnel that the server needs
attention.

At the heart of the design of SCOM (System Center
Operations Manager) vs. MOM is the concept of a
monitor and rollups to create the overview of a whole
system. These aggregate monitors enable the creation
of a dashboard to show the overall status of many
systems with end-to-end monitors, including the sta-
tus of degraded. A degraded service is one that is
still able to operate, but is experiencing some level of
failure that will reduce performance or redundancy.
The next evolution in this automation, after build and
monitor, is to design the reaction and response when
an alert is triggered. This reduces support tasks through
automating the recovery of failed service components.
In the SCOM literature this is called Diagnostic and
Recovery. Two tasks are defined as part of the monitor
(or alert): upon the alert trigger from the monitor, the
diagnostic task is run – each diagnostic task can then
execute a recovery step, such as restarting a service if
the diagnostic reports that it has stopped.

Whoami

15

With the systems becoming more automated, I was
able to focus on other work. A project I particularly
enjoyed was the helpdesk software upgrade. Most
businesses run processes (whether formally written
down or not) and most call centres deal with a lot of
enquiries – and a busy IT service desk is no exception.
Working with IT management to understand what and
why certain processes exist helped me work with the
software provider to install and set up the new service
desk software. Part of the vision was to streamline some
tasks and automate others.

Taking my experience of automating server-side recov-
ery tasks, it was useful to apply these lessons to create
a self-service portal for the IT customers and users. In
this way, some of the simpler orders could be requested
directly by the customer, and the automated provi-
sioning systems would then provide and action the
required steps to deliver the product or service the
customer had ordered. This was first available to IT staff
for ordering such things as software installs, access to
software via Citrix, and even the provisioning of a VDI
(Virtual Desktop Infrastructure) machine to use. This
created great consoles and customer experiences easily
demonstrated by the Amazon Web Services™ Console.

Who Moved My Servers?

16

Because of these achievements I was promoted to senior
technician, and later, support team leader. Unfortu-
nately, this latest promotion took me away from the
creative tasks I love, so I filled a great deal of my spare
time looking for a programming project.

My programming had taken a back seat for long enough.
I was just starting to implement automated responses to
server alerts, allowing the servers themselves to tell you
that something needs attention. This was stimulating
my programming juices, and around 2012 I started to
hear about something called DevOps. It was sold to me
as infrastructure guys writing programs to fix faults
spotted by the monitoring and alerting systems.

Meanwhile, programming had developed in the mar-
ketplace. I was never trained as a programmer beyond
A Levels, but terms like SCRUM and Agile seemed to
go hand in hand with DevOps. My career made a slight
pivot, and now I can share my learnings with you.

An individual with a DevOps title in the IT profes-
sion will tell you there is no such thing as a DevOps
engineer when used to describe their job. DevOps is
better described as a business function, where a team
with differing skills and experiences work together to
facilitate the delivery of IT products and services.

Whoami

17

To get the best performance, this team must consist
of someone to understand the product, someone to
develop the solution, someone to test it, and someone
to ensure it delivers. SCRUM and Agile frameworks
have good labels for these team members, and I will
describe them further in the chapter about key concepts.

A transformation project, as cloud and Agile migra-
tion projects are often called, are much more than just
DevOps. As well as the team mentioned earlier, the
management needs to be on board and understand
the new ways of working, as well as the practices in
place to provide a view on planning, progression and
completeness of the project(s).

The next section will cover what the cloud is, what
it means, and how you and your business can bene-
fit from it. I will cover the joy of throw-away virtual
machines, the available cloud providers such as Ama-
zon Web Services and Google, and share my thoughts
about hybrid solutions offered by VMWare™, Pivotal
and Data Centres.

The cloud and Agile practices are not without their
problems of course. I will share my DevOps knowledge
about working with customers on transformation pro-
jects and the problems they came up against, as well as

Who Moved My Servers?

18

the solutions. There are also technical problems moving
applications and services to the cloud, and these will
be addressed also.

Finally, I will cover the steps required to implement
cloud infrastructure and project delivery, so you can
journey boldly and confidently to help your project or
company embrace the cloud, save money and deliver
a great experience to your customers.

And just maybe we can automate ourselves to utopia.

19

TWO

What Is Cloud?

Someone or something (in the case of automated pro-
cesses) will provide a service and look after some

aspects of running that service. These are classified
into three levels:

1.	 IaaS: Infrastructure as a service. This is at the
basic level like Amazon Web Services EC2 (IaaS)
that provides a server attached to a network. The
configuration and running of that server is up to
you.

2.	 PaaS: Platform as a service. More aspects of
the platform are supported by your provider.
Examples are Heroku™ for application hosting.

Who Moved My Servers?

20

3.	 SaaS: Software as a service. At this advanced level
such as Shopify™, Xero™ or Expensify™ you
request the service and they look after the code,
servers, etc.

The National Institute of Standards and Technology
(NIST) published a definition of cloud computing1 in
September 2011:

Cloud computing is a model for enabling
convenient, on-demand network access to a
shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and
released with minimal management effort or
service provider interaction. This Cloud model
promotes availability and is composed of five
essential characteristics (On-demand self-service,
Broad network access, Resource pooling, Rapid
elasticity, Measured Service); three service models
(Cloud Software as a Service (SaaS), Cloud
Platform as a Service (PaaS), Cloud Infrastructure
as a Service (IaaS)); and, four deployment models

1	 P. Mell and T. Grance (2011) The Nist Definition of Cloud Computing.
Gaithersburg, MD: National Institute of Standards and Technology,
available at https://csrc.nist.gov/publications/detail/sp/800-145/final

https://csrc.nist.gov/publications/detail/sp/800-145/final

What Is Cloud?

21

(Private Cloud, Community Cloud, Public Cloud,
Hybrid Cloud). Key enabling technologies
include: (1) fast wide-area networks, (2) powerful,
inexpensive server computers, and (3) high-
performance virtualisation for commodity
hardware.

Of the five essential characteristics, On-demand self-
service, Rapid elasticity and Measured service are
worth going into more detail.

On-demand self-service

This is where a consumer can provision computing
capabilities automatically, without requiring human
interaction. This level of automation enables fast and
accurate provisioning of computing power including
associated services, such as network storage, whenever
your application needs it. This can be delivered in two
ways:

•	 Rapid elasticity: The appearance of unlimited
resources that can be elastically provisioned and
released, in some cases automatically, to scale rap-
idly outward and inward to match demand.

Who Moved My Servers?

22

•	 Measured service: Automatically controlling and
optimising resource use, for example by using
a metering capability for by-the-minute billing.
Resource usage can be monitored, controlled and
reported, providing transparency for the provider
and consumer of utilised services.

Let’s contrast this with the five stages of computer
evolution:

1.	 Mainframes provided a central resource accessed
by computer terminals. Access was limited to
CPU cycles or time on the mainframe required
to run your programs and processes in a private
session.

2.	 During the 1980s, home computers became widely
available, with computing resources available for
private stand-alone usage.

3.	 During the 1990s, businesses increased their use
of computers outside of the finance department.
The need to share information and the rise of
Microsoft Windows saw data servers introduced
into individual offices and shared among the
computers.

What Is Cloud?

23

4.	 Into the 2000s, the commoditisation of server
hardware (blades) gave rise to private Data
Centres and further optimised using virtualisation.

5.	 The rise of virtual infrastructure enabled cloud
providers selling compute time by the minute
from public multi-tenant data centres.

As a child of the 80s (I was born in 1975) I have first-
hand experience of all these stages.

I acquired much of my server knowledge during the
2000s, when I worked for Sanctuary Housing. Their
computing model was not dissimilar to the mainframes
where a pool of Citrix servers, a type of Windows
server that could share private desktop sessions, were
accessed using remote terminals consisting of a screen,
keyboard, mouse and network connection.

As the company was growing rapidly, the server
team and I had the task of providing an ever-growing
resource of Citrix servers, while the desktop team ran
flat out setting up and shipping terminals to all the
new offices.

Running your own data centre has many pros and
cons. The rapid elasticity is backed by a team of server

Who Moved My Servers?

24

technicians buying, building and installing the ever-
growing number of servers. For a business this is a
capital expense.

This process takes time, usually weeks. First comes the
business process of buying the server hardware, then
the lead time for the supplier to deliver the servers.
Once received, the servers need building. The compo-
nents such as CPU and memory are shipped separately
and need to be installed into the servers. Assuming
sufficient capacity in the data centre, both in terms of
physical space and cooling and power, the servers are
installed into racks within the data centre, ready for
the next step of installing software and configuration.

The latter step was mostly automated, as the server
can run programs and set itself up according to the
configuration supplied to the new server. This step is
also required when provisioning IaaS servers.

Moving the provisioning to server blades (smaller
servers optimised for data centres) and later using Xen
virtualisation, the provisioning time reduced per server
as they were virtualised with many sharing bigger
hardware servers, enabling batch setups.

What Is Cloud?

25

When you request a server in the cloud, with the excep-
tion of the server setup, all the steps are done for you
and the lead time for the virtual server is measured in
seconds. This frees up a huge amount of setup time,
both in the sense of delivery and lead time of the serv-
ers (hardware), and the engineering time to physically
install and set them up.

To facilitate and manage virtual servers, the public
cloud providers enable you to purchase virtual servers
on a pay-as-you-go basis. They also manage the infra-
structure, data centres, network, etc, which removes a
lot of the admin and setup overhead.

Rapid elasticity

A major part of the cloud definition is On-demand and
Elasticity. Usually the cloud provider, both private and
public, will enable the request for new servers via a
web interface or Application Program Interface (API).
Together with access controls and audit records, this
enables authorised users to spin up a cloud server in
seconds.

This action equates to switching on a brand-new server.
I’m sure you recall the last time you received a new

Who Moved My Servers?

26

computer or laptop. It usually came with a pre-installed
operating system, but then you had to spend the next
few minutes or hours (or days in some cases), setting
it up to your liking and installing software so it was
usable. The same is true of the cloud server: spinning
it up is just like switching on that brand-new computer.

Part of the role of DevOps is to put processes and auto-
mation in place so that after spinning up the server, it
configures itself, ready for work in a few minutes. The
main reason for this is that cloud providers use cheap
commodity hardware. The main cost of running the
server is the electricity, not the hardware itself.

This is not the same hardware you would often find
in an onsite data centre. What I’m referring to is the
concept of a server that is not designed to be switched
off, ever. The sort of server where most, if not all, the
components can be swapped out in the event of a fail-
ure, while the server is still operating. No, the server
hardware in the cloud is not like that: it’s cheap and
does its job just fine. The thing to remember is that it
will eventually fail.

This means the systems running on and with the server
must expect failure and be able to cope with it. Anyone
can spin up a server in the cloud, but a DevOps team

What Is Cloud?

27

of developers and system operators can write code so
that the server is running in less than ten minutes. It
can do this repeatedly and reliably, so when the server
does fail, the impact to your application is a small
degradation in service, while the systems seamlessly
build you a new one.

Measured service

With the ability to create servers at the click of a button
or by using automation, reacting to a large demand on
the servers, without adequate monitoring, could leave
you with a large bill.

The cloud provider will provide measuring in several
forms. These are based on how many servers have been
requested and delivered, how many are running at any
given time, the run time of those servers, together with
the cost and billing.

In addition to the resource and billing side of things,
the servers are also monitored from a health and per-
formance perspective. Is the server still responding to
the hypervisor – can the physical server still see the
virtual server it is hosting? Can the network hear the
server normally?

Who Moved My Servers?

28

In addition to these basic checks, monitoring also
includes CPU and network usage and sometimes mem-
ory usage. With the automation of server configuration,
together with monitoring CPU and network usage,
thresholds can be set to enable the elastic growth of a
load-balanced application to scale out.

In addition to the basic monitoring offered by the cloud
provider, you’ll want further monitoring so you can
check on the health of not only the server or servers (in
a cluster), but the health of the application or services
to your customers. More of this will be covered in the
next chapter.

If you are still hesitant about using cloud, you’re not
alone. The most common issues are security and data
storage. Specifically, whether you can store your data
where it won’t be lost or stolen.

This was a big issue in 2008, but with newer services,
such as Amazon Web Services’ VPC (Virtual Private
Cloud), private networks with a link to your offices,
and no inbound internet access, there’s a much smaller
attack area and thus improved security.

Of the public cloud providers, AWS certainly has the
lead both in products available and customers served.

What Is Cloud?

29

With over 50% of the potential market not using cloud,
and a fraction of that just using it for development
purposes, there is a long way to go in terms of growth.

Google

Alibaba

Microsoft

Oracle

IBM

Salesforce

Amazon AWS

RackspaceA
N

N
U

A
L

G
RO

W
TH

 R
AT

E

WORLDWIDE MARKET SHARE
0% 35%

10
0%

Gaining market share
but a long way to go

Holding
steady

Market Growth Rate

Strong
niche players

In a league
of its own

Figure 2.1: Cloud provider market share statistics. © Synergy Research Group
2018, https://www.srgresearch.com/articles/cloud-market-keeps-growing-over​

-40-amazon-still-increases-share

The major players are still growing at over 50% per year
with AWS growing and holding its market share lead.
Synergy estimates that cloud infrastructure revenues
are in excess of $48 billion per year, and growing at
well over 40% per year.

https://www.srgresearch.com/articles/cloud-market-keeps-growing-over-40-amazon-still-increases-share
https://www.srgresearch.com/articles/cloud-market-keeps-growing-over-40-amazon-still-increases-share

31

THREE

What Is DevOps?

There are developers who care about production
and server infrastructure. There are Sysops and

infrastructure technicians who can develop programs.
But there’s still a gap between these two specialists.
DevOps is where these two resources work together,
teaching each other about testing, deployments, mon-
itoring and performance. More recently it has come
to define those with infrastructure and development
experience, having already learned through experience.
I’m an infrastructure person first, but have always had
an understanding of programming.

The term ‘DevOps’ was first coined in 2008 at the Agile
conference, where agile infrastructure was discussed

Who Moved My Servers?

32

by Andrew Clay Shafer and Patrick Debois. It quite
literally refers to developers using Agile methodolo-
gies to communicate and collaborate with server and
network infrastructure professionals. This brings the
slow and somewhat static world of infrastructure into
the dynamic and fast-paced world of software devel-
opment through automation and delivery using both
tools and culture.

The term Agile was first coined for this in 2001, in the
Manifesto for Agile Software Development (Agile Man-
ifesto) where a group of seventeen software developers
came together in Utah to discuss lightweight software
development methods. Its roots are a bit older and
stem from ideas in the 1990s, such as rapid application
development, scrum and feature-driven development
to name a few.

The Agile Manifesto is based on twelve principles:2

1.	 Customer satisfaction by early and continuous
delivery of valuable software

2.	 Welcoming changing requirements, even in late
development

2	 Kent Beck et al (2001), http://agilemanifesto.org/principles.html

http://agilemanifesto.org/principles.html

What Is Devops?

33

3.	 Working software delivered frequently (weeks
rather than months)

4.	 Close, daily cooperation between business people
and developers

5.	 Projects are built around motivated individuals,
who should be trusted

6.	 Face-to-face conversation is the best form of
communication (co-location)

7.	 Working software is the principal measure of
progress

8.	 Sustainable development, able to maintain a
constant pace

9.	 Continuous attention to technical excellence and
good design

10.	Simplicity – the art of maximising the amount of
work not done – is essential

11.	 The best architectures, requirements and designs
emerge from self-organising teams

12.	The team regularly reflects on how to become
more effective, and adjusts accordingly

Who Moved My Servers?

34

To enable these ideas to propagate and enhance uptake,
there have been further enhancements and evolutions
for a spread of tools and frameworks. Most promote
teamwork, collaboration and process adaptability
throughout the product development lifecycle. In
organisations with an agile culture you will see four
primary processes:

Iterative

This process centres around small progressive evo-
lutionary and incremental steps. Each iteration is
timeboxed within a short period, often days or weeks,
where a cross-functional team will discuss, design,
create and test a new feature or bug fix with a working
piece of software at the end of the timebox. It might not
be enough to warrant a release or new version of the
software, but it’s a fully working part of the next release.
Often at the beginning of a green project, where nothing
exists, many of the initial tasks are one-off productions
of scaffolding. At a new start-up for instance, this could
consist of the creation of a cloud computing account
and definition of networks, together with infrastructure
service providing scheduling and build facilities. With
an established team or company, a framework of the
end-to-end service may be designed, with minimal

What Is Devops?

35

aspects to each process in the service created during
the first iteration.

Communication

In addition to team members working together closely,
the product owner is present to provide answers to any
questions posed by the team while they’re developing,
and provide guidance to ensure the return on time and
money invested is maximised. Communication about
the status of the project is shared by way of a pub-
licly displayed information radiator or Kanban board.
Should the team have outside dependencies, commu-
nication extends to them also. Bringing in expertise to
the team as required, or team members working with
other teams, will also help spread the vision and reduce
the impact of blockers or impediments.

Adaptation

A very short feedback cycle is backed up by a daily
stand-up meeting sometimes called the daily scrum.
Team members will share their progress from the pre-
vious day, what they intend to complete today, and
any impediments that may slow progress. Sharing

Who Moved My Servers?

36

progress in this way allows greater cooperation and
for knowledge to be used across the team.

Quality

Continuous integration, test-driven development and
pair programming help to improve product quality and
enhance development agility.

It should be noted that it’s too easy to be drawn into
trying to be Agile without actually being agile. The
framework and process are a proxy for delivery of
value with fast feedback loops, supporting continuous
improvement and delivery. I see many companies
getting into the trap of renaming roles and processes
to tick the Agile box, but without the fundamentals or
having a clear understanding of impact on the day-to-
day workings of product development.

Agile doesn’t mean changes for the sake of change:
there are still planning and deployment cycles so the
teams know where they are heading. However, without
some forethought, costs can be significantly different
based on decisions in the design stage. Design tweaks
can make a significant difference to AWS spend and

What Is Devops?

37

therefore eat into the savings you thought you were
going to provide.

During an iterative development, design is required to
ensure certain non-functional requirements are still met.
I have often seen that killer new feature implemented,
but at the cost of limiting the ability of the application
to grow. The resulting technical debt lurks until the
inevitable scaling of the application is needed as the
customer base and popularity grow.

The main drawback of Agile is where it fails to include
operations early enough in the development cycle.
DevOps adds to Agile by emphasising effective collabo-
ration and cooperation across the entire IT department
through extended teams to deliver software and a
single, unified activity. From creating the software to
delivering a return to the company, and ultimately
through to the end user experience.

DevOps is a working culture that delivers software to
its users with an optimised cycle of creation, test and
delivery, resulting in a quicker return on investment
and shorter time between failures.

There are several key voices leading the way in Dev-
Ops; Damon Edwards, John Willis and Jez Humble

Who Moved My Servers?

38

coined the acronym CALMS: Culture, Automation,
Lean, Measurement and Sharing. Patrick Debois added
to this, stating that DevOps is a human problem.

Culture is closely linked to behaviours and is certainly
key when developing DevOps practices for your team.
Getting this right isn’t easy, but it’s very important
as it weaves throughout the behaviours of everyone
involved.

Automation of processes is a great way to remove errors
through repetitive cycles of work, allowing the team to
engage their more creative side.

Lean is a nod to the Japanese manufacturing movement
of the 80s and 90s where continuous improvement and
reduction of waste provided a lean production process
and reduced costs. This means focusing on where the
value is and deferring anything else. Some planning
and code are required, but just enough to be viable.

Measurement helps identify where bottlenecks and
waste (two ends of the same scale) occur in systems,
allowing further improvements to be made.

What Is Devops?

39

Sharing feeds back into the culture and feedback mech-
anisms, allowing the whole DevOps and CALMS move-
ment to advance forward one iteration at a time.

Gene Kim has continued the pioneering research
started by Patrick Debois in DevOps practices. Using
Gene’s interests in security operations, ITIL (Informa-
tion Technology Infrastructure Library) created by the
UK Government, and high-performing IT organisations,
he has written several books on the subject, including
his very successful book The Phoenix Project.

This book describes the journey of a manager dropped
into a senior IT position following the dismissal of the
previous guy, and shows by example how DevOps
culture and practices can be introduced and embedded
within an organisation, bringing together operations,
application development, security and testing, improv-
ing effectiveness and efficiencies in the organisation.

DevOps teams

Team and inter-team organisation are big subjects.
Suggested reading includes https://skeltonthatcher.com
and works about Conway’s Law.

https://skeltonthatcher.com

Who Moved My Servers?

40

The best functioning teams should be set up to remove
or reduce the number of external dependencies either
through individual team membership from a squad, or
self-service of products from the provider team. Spotify
wrote a white paper on their experiences, published in
2012, and coined squads and tribes as a way of describ-
ing a matrix team structure.

As Spotify is a company with a fail fast and learn cul-
ture, this view has evolved over time, together with
the advances in automation, to provide autonomy and
self-service in place of team meetings and cooperation.

This gives us two modes of engagement that a team
can take with DevOps:

1.	 DevOps is advanced enough to provide a PaaS,
and therefore the team and developers can self-
serve any resources they require

2.	 A DevOps squad member joins the team helping
the developer team, therefore internalising
external dependencies

DevOps teams, sometimes called cross-functional
teams or squads, are like the A Team in the IT world.
Three to nine people that have every skill they need to

What Is Devops?

41

design, create, test, deploy and deliver a solution to
the customer. This includes operations and infrastruc-
ture, business analysts, developer and programmers,
security, designers, database administrators, product
owners, and any other skill the team needs for the
project they are assigned. The resulting team has all
the skills and access required to deliver a complete
solution without external dependencies. These teams
can work on one project at a time, and continue to work
together on many projects depending on the scope of
the work and customer.

Following SCRUM or Kanban processes and the princi-
ples of DevOps and Agile, the team works together to
define, prioritise and estimate these tasks. The product
owner works with the business analyst to create a list
of items that will create value for the product owner.
These may be new features, upgrades, defect fixes and
other work. This is added to the backlog. The team
is self-organising and breaks the project down into
concrete tasks or steps, estimates the size of the tasks,
and these are also added to the backlog. There may be
a few iterations between the team estimation and the
product owner, who is there to direct the tasks in order
of importance or priority.

Who Moved My Servers?

42

Figure 3.1 shows a workflow that involves all the roles
in a lean team. A person in the team can take on one or
more of these roles, depending on the size of team and
the skills they have.

Product Owner

DevOps

QA & Testing

Business
Analyst

Developers

Delivery Lead/
SCRUM Master Pipeline

Backlog

Version
Control

UI/UX

Monitoring Feedback

Testing Feedback

Build Test Live

Figure 3.1: A DevOps team

There are more feedback loops than on this diagram,
for instance UI and UX will get design and usability
feedback from the user group or product owner.

What Is Devops?

43

Product owner role

This is the ultimate authority on the deliverables, and
can be a stakeholder, budget holder or Subject Matter
Expert (SME). They understand the business and the
problem that it’s experiencing, and how this project or
product is going to help. They need to have knowledge
of the product area and have some budget authority.

Business analyst role

A key role that acts in some sense as a design author-
ity and sometimes a translator. Working with the
product owner to understand the key outcomes and
understanding the business processes that must be
understood, followed or replaced by the application
developed by the team.

Delivery lead/SCRUM master role

This role is often seen as a facilitator. They will co-
ordinate planning and retrospective sessions, as well as
liaising with other teams to resolve blockers and other
issues hampering progress.

Who Moved My Servers?

44

UI/UX role

The focus for this role is what the end user sees: usability
of the software. This is an important early role that may
work with the business analyst. From the initial user
feedback and framework designs, to designing visuals
and graphics, this role is focused on understanding the
user experience, defining and shaping how the software
looks, and how the processes are presented to the user.
Usability is essential, as is getting user feedback and
ideas about the software the team is developing. This
feedback loop will ensure the developing product is fit
for purpose and easy to use.

Developer role

This role writes tests and the functional code for the end
software or product. They are an expert programmer
and often have other skills that are classed in the other
roles. The focus of this role is to create features, and
sometimes tools. As bugs do appear, writing tests helps
get fast feedback to reduce the bugs before deployment.

What Is Devops?

45

Quality assurance and testing role

The focus of this role is to ensure the software delivers
the functionality specified by each task, without break-
ing anything else. As an expert in the area of testing,
they will be writing and executing tests, or in some
cases conducting manual tests themselves.

DevOps role

This role is responsible for delivering the tools and
servers required by the DevOps team. The toolset of
a DevOps team includes source control systems and
continuous integration server(s).

Infrastructure and servers for development, and testing
and production (live) environments, are built using
automation and pipelines. They are also built with
service monitoring to provide feedback to the team for
reliability, scalability and performance.

Using the same continuous integration scheduling
system, pipelines are created by DevOps or the team
to build and test the code as progress is made.

Who Moved My Servers?

46

All this is provided with as much self-service and auto-
mation as possible.

Other SMEs should be brought into the team when
specific skills are needed. Examples include database
administrators (DBAs), infrastructure architects, busi-
ness users or other experts.

Once these resources are in the team, pair programming
(where two team members work together on a task) is
encouraged to enable the sharing of experience and
knowledge among the team, thus decreasing the silos
of information.

I have found that having a team member on loan for
several specific tasks not only enables the knowledge
of the team to grow, but the task to be achieved faster
and with higher quality.

These loans provide many other benefits outside of the
completion of tasks, including greater team cooperation
and social ideas with chance conversations and wider
social interactions.

SECTION 2

WHY CLOUD?

49

FOUR

Cloud Infrastructure
Solutions

Traditional approaches to application design and
deployment could leave you with downtime just

when your customers want to spend money with you,
or when you want to update the production service
with that killer feature you and your team have been
working on.

You may have heard about the success of start-ups
moving fast and using the best of cloud technologies.
Then why, you wonder, when you move away from
one monolithic application to the cloud, do you see
your downtime figure moving in the wrong direction?

Who Moved My Servers?

50

While moving to the cloud means you no longer need
a dedicated team of engineers for security updates, fea-
ture updates and bug fixes, it could lead to a sprawling
mess of servers with data everywhere. How do you
keep your cloud servers manageable and your data
safe?

There are already tried-and-tested methods to migrate,
re-platform and move towards customer-first, mobile-
first and cloud-first applications – where you will save
time, money and energy – and most important of all,
keep the service running with little downtime and
unsociable call-outs.

By using DevOps practices which blend the creation,
testing and rigour of programming best practices,
together with the practicalities of building and oper-
ating enterprise infrastructure environments, we build
a cloud-first, Agile system. By utilising open source
software with a plan, we create great results!

Application designed for cloud

To fully embrace the benefits of cloud, your application
needs to be designed with an understanding of what

Cloud Infrastructure Solutions

51

the cloud can do for the application. The classic belief of
one big application able to do anything and take weeks
or even months to upgrade due to its monolithic struc-
ture is very outdated, and not useful to take advantage
of cloud technologies.

I will cover the Agile development principles and
microservices, both aimed at getting value to your
customers as quickly as possible.

Automated infrastructure

DevOps is the result of developers and operations staff
working together. Building servers or applications,
creating tools, and self-service are the hallmarks of
successful cloud-oriented teams. The keys to increas-
ing efficiency of delivery is in the repetitive nature of
build, test, deploy. Automating this makes it easier to
get fast feedback for fast deployment, delivering value
quicker. Having developers and operations staff work
together also reduces friction involved in deployment
and operations, allowing some organisations to release
a new version of their software multiple times per hour.
Without automation the process would simply be too
slow, and the risk of errors would be great.

Who Moved My Servers?

52

Scaling for flexible workloads

With the code deployment and infrastructure auto-
mated, flexibility and scale are possible for the servers
providing the service to your customers. Scaling up to
demand is as important as scaling down once the peak
has past. This enables your business to spend the least
on cloud infrastructure, while being able to deliver the
most when your customers need it.

Keeping the data safe

With automation, data is moving around quickly with
servers existing for a short time to meet demand, then
disappearing. Care must be taken to ensure data is
not lost in this process. In the early days at Google,
they would log searches on the website, but this data
wasn’t seen as important, and would quickly become
overwritten by other requirements. Of course, this is
very different now, as that information is now a service
in its own right (Google Analytics).

Cloud Infrastructure Solutions

53

Cloud workloads

The value of setting up or moving to the cloud should
be understood before planning anything. Ask yourself
the following questions to help the planning process.

1. Does your company have and own a data centre?

This might not be an obvious place to start, but data
centres take time, money and effort to set up and run.
Google was created in 1998 and its first server was in
a dorm room. The first rack of servers was housed by
Stanford University. Following that, Google rented
co-location services until it commissioned its first data
centre in The Dalles, Oregon, built in 2006.

If you don’t have a data centre, then setting up in the
cloud is an obvious choice. If you do, more questions
need to be explored.

2. Does the application have a dynamic workload?

When speaking about dynamic workloads during a
given period, like a day or month, does the workload
in terms of CPU, memory or storage vary significantly?

Who Moved My Servers?

54

An online shop may only become busy during the
day and have significantly reduced traffic at night. A
vehicle registration service used by a motor dealer may
be extremely busy during certain months, and have
significantly lower use for others. On the other hand,
an accounts package used by the finance department
may have an even workload throughout the month,
with no major variation.

This becomes more complex when an application is
using multiple components or systems (like a reporting
system) which ticks along continuously, and it’s the
component populating the data that peaks and troughs.
One system can take advantage of the fluid nature of
cloud and the other may well stay in the data centre.

3. Could the application have a dynamic workload?

Many enterprise software companies are now building
their platforms with the cloud in mind. For example,
Vertica™, a database system. This database system
specialises in column-based data and is very quick for
big data queries. At its core, it is designed to handle a
complete failure of one node and be able to grow or
shrink the database nodes in a cluster. This isn’t an
everyday activity, but it could become one in the near
future.

Cloud Infrastructure Solutions

55

Another example is SAS™, a data analytics platform.
The current versions of the platform (9.4) are a lit-
tle static in nature, but have a feature called the grid,
which enables the growth of the computing power of
the application as it’s required. Again, not very elastic
by the hour, but SAS is working on Viya™ which is
designed to be cloud native. An upgrade project from a
data centre to cloud-based Viya might be cost effective
for your organisation.

4. Does your company require more flexibility with storage?

With its appearance of unlimited resources, a cloud
provider can provide unlimited storage for your com-
pany to store documents, data and other digital assets.
Backups can also be stored in the cloud, removing the
need for tape and associated issues.

Websites

A great place to start with a proof of concept is the
company or internal website (intranet). Development
versions of these can be designed and built in the cloud
with DevOps best practices in mind. You can start from
nothing but a list of requirements, or choose to migrate
what you have now and deploy a test environment to

Who Moved My Servers?

56

the cloud to gain familiarity with the processes and
platform.

Enterprise software

Often the hardest to migrate to the cloud is enterprise
software. These sometimes monolithic applications
expect a very closed and stable environment and may
well reside on delicate servers.

While this makes them great candidates for disaster
recovery (DR) testing, they are usually the most dif-
ficult. I have seen some organisations where a hybrid
data centre/public cloud infrastructure exists purely
because the enterprise software is unable to be moved
or migrated until it’s time for a major upgrade.

Many enterprise software vendors are now taking a
cloud approach for their newer versions of software,
allowing deployments to take advantage of cloud flex-
ibility and cost savings. SAS offers the latest version
with DR and scalability designed into the product, pro-
viding support for the migration and upgrade project.

Cloud Infrastructure Solutions

57

Data warehouse and analytics

In 2016 I was helping the MoneySuperMarket Group
with their data warehouse and analytics platform. They
decided to host it 100% in the cloud as this gave them
two major benefits:

1.	 The cost of running the platform was 30% of what
it would cost in the data centre, primarily since
the development environments are only available
for between eight and twelve hours a day

2.	 The ability to provision an ever-increasing amount
of storage capacity

Using the concepts in this book, the HP Vertica cluster
was/is rebuilt every day except for weekends from
nothing but the backup of the disks holding the data-
base data, along with the supporting scheduling, ETL
(Extract, Transform, Load) and infrastructure servers.

For the AI (Artificial Intelligence) runs, small clusters
of servers are provisioned and destroyed on demand
to run jobs when required, providing flexibility and
saving capital costs on traditional solutions.

Who Moved My Servers?

58

Data analysis and Artificial Intelligence

The fastest growing sector is Business Intelligence:
using all that data you have stored about your cus-
tomers to understand what their pain is, what their
preferences are, and what are they likely to buy or
want to buy next.

Artificial Intelligence is the study of how computers
can analyse large amounts of data, and find answers
to these and many other questions.

The high availability and scalability of the cloud, along
with its ability to store large amounts of data, make it
the perfect platform to run the AI algorithms over all
your data as quickly as possible.

Platforms such as HP Vertica, Hadoop, R, and program-
ming language frameworks like TensorFlow, enable
businesses to create reports, sometimes in real-time, to
enable different views of their customers.

Amazon uses its own AI platform to recommend books
and other purchases from its massive warehouses based
on your and your friends’ views and clicks. One of my
clients uses click and impression data to drive CRM
campaigns which in turn drive sales.

Cloud Infrastructure Solutions

59

The scalability of the cloud is useful as it can grow as
your data grows, or more precisely as the processing
time of the data grows. Adding more analytic serv-
ers into the cluster reduces the actual clock time by
spreading the processing over more workers, much
like scaling the back end of an application.

Application design for cloud
operations

Services are applications that run from network or
internet facing servers, and are usually long running.
For example, a web or email server. Services are another
component of an overall enterprise level application.
For instance, a three-layer application will have at least
three services. The database service, the application or
business logic web service, and the customer facing or
website service.

Separating out the monolithic application in this way
gives us more flexibility in deployment to provide bet-
ter resiliency against failure, and the ability to upgrade
the application component or the server infrastructure
it runs on.

Who Moved My Servers?

60

When designing an application for the cloud, the func-
tional parts of the application are usually broken down
into the smallest component possible and referred to
as micro architecture. This is the exact opposite of
monolithic, where the whole of the application needs to

Web Server

Web Server

Application Server

Application Server

Database

Data

Web servers that are
accessed directly by the client

Load-balanced or fault-tolerant
application servers that run the
application and business logic

A database cluster holding the data
and files used by the application

PRESENTATION LAYER

APPLICATION LAYER

DATABASE LAYER

Figure 3.2: A 3-tier application

Cloud Infrastructure Solutions

61

reside on the biggest server hardware you can imagine,
with hard coded dependencies everywhere.

In addition to creating small discrete components of
the application, some care also needs to be considered
in order for the components to communicate. Shared
data sources or message queues can facilitate this and
need to be considered and figured into the design.
Breaking the application into smaller pieces not only
aids in the scaling of the application, it also helps with
development and testing.

With each of the components comes a design or story,
defined inputs and outputs, a list of resources the
component can expect to use, and a testing plan for
ensuring quality of the produced module.

Developing in this way can make use of personal
Docker™ – a tool that provides isolation between appli-
cations – or other virtual environments to develop and
test, further increasing velocity by reducing contention
on shared resources.

In a micro architecture design, all parts of the applica-
tion are designed to run on their own, providing inputs
and outputs just for that function. This allows two main
things to happen. The first is that each component can

Who Moved My Servers?

62

be developed independently of any other part, includ-
ing testing. The second is that it can also be deployed
independently – and often in a scalable manner – allow-
ing the application to avoid performance bottlenecks
as each independent component can be designed with
scaling built in.

If you are used to running applications in data centres,
you know a lot of thought and design goes into getting
the right server or servers to run the application. This
is usually based on factors like growth, storage and
estimated future demand of that service. Within the
design for the application or service, it’s assumed the
functionality won’t change very much.

IT consultancies and project managers first introduced
change control to reduce the change of the application
in order to keep things as static as the quotes and pro-
ject plan had predicted.

When moving to the cloud, one of the major benefits
(and potential headaches) comes from the expected
rate of change an application can have. The Unicorn
businesses have pivoted mid-project to move along
a different path to create an even better and more
profitable plan.

Cloud Infrastructure Solutions

63

This flexibility is a million miles away from traditional
data centres and project management, so it will take
some time to get used to. However, once the idea of
rapid development has taken hold, the cloud can be
easily embraced to empower your teams and your
application.

Dependencies

From the very simplest programs to apps that run on
your mobile phone, to the largest enterprise appli-
cations running on servers, mainframes and office
computers, code is made up of the same structure – of
which the function is one of the smallest components.

The very smallest component is a machine code instruc-
tion. These run on the CPU itself and are made up
of three types: math, decisions (or comparators) and
moving data. It’s rare for programmers to deal at the
CPU level, and they usually focus on statements. These
statements vary between programming languages,
and are functions turned into machine language by a
compiler or interpreter.

A programming language will give the developer a
range of instruction functions that mirror the CPU

Who Moved My Servers?

64

instructions. Mathematical calculations, program flow
(comparators) and moving data (input or output) can
be wrapped in our own function definitions, thereby
simplifying the code by building on top of other code.
This makes it easier to build more complicated pro-
grams by reusing code that we have already written
or is available.

1 | #include <iostream>

2 | using namespace std;

3 |

4 | int main () {

5 | // for loop execution

6 | for(int a = 10; a < 20; a = a + 1) {

7 | cout << "value of a: " << a << endl;

8 | }

9 |

10 | return 0;

11 | }

In this simple snippet, we can see the basics:

1.	 A function, main() on line 4, which contains, on
line 6, a ‘for’ loop (program flow)

2.	 On line 6, variables (for holding data) and
calculations (a = a + 1)

Cloud Infrastructure Solutions

65

3.	 Finally, on line 7, moving data by outputting it to
the screen (cout function)

A function takes the input, manipulates or stores the
data, and produces an output. Some functions need
no input and just produce output, like an initialiser
function that will output a data structure that the appli-
cation will use later.

A function may take an input and create an output, like
a mathematical function, or it could take an input but
not create an output: a no operation or wait function
might do this.

Programming languages usually come with standard
libraries, which build on basic functions, saving time
and effort for the developer. In the example above, the
iostream library is included to give the program access
to the cout function.

As a developer, custom libraries of functions can be
written and shared. As new functions are added to
these libraries, they are version-controlled so that devel-
opers using the library can expect certain functions to
exist and work in specific ways, based on the version
number that has been downloaded and installed.

Who Moved My Servers?

66

Writing a program using functions from a library can
reduce development time. However, as libraries are
updated with new functions, features and bug fixes,
the specific version number is very important to the
program working reliably.

Dependencies on libraries and other assets (like fonts
or graphics) are managed by the developer. Tracking
these can be difficult when one library depends on
another library. Without careful management, depend-
ency hell can ensue while trying to keep these inter-
dependencies up to date.

It’s these interdependencies that can make it difficult to
deploy an application and software to a computer or
server. Many programming languages have a package
manager to look after these interdependencies for the
developer. Ruby uses bundler, Python uses PIP. By cre-
ating a Ruby GEMFILE in the application project, run-
ning the bundle command to read this file will install
the specified versions of libraries, as well as ensuring
the interdependent libraries are also installed. If there’s
a conflict, this needs to be resolved by the developer.

You’ve probably seen shared library installation in
action yourself when you run an application installer
on your computer or laptop. The installer, as well as

Cloud Infrastructure Solutions

67

installing the application itself, will also install depend-
ency programs and libraries. On some occasions, this
can cause previously installed software to break as it
was using the same but different version of the shared
library.

Installing applications to servers is no different, and
where two different programs require different ver-
sions of the same shared library, a second server needs
to be deployed to keep the programs separate.

Application isolation

When having a second server or computer isn’t practical
we can employ application isolation. This is where
some of the computer is partitioned off, at least at the
file system level, which will allow two programs with
conflicting dependencies to exist on the same machine.
On the Citrix servers I configured for Sanctuary Hous-
ing, the challenge was to migrate Microsoft Office to the
latest version. The solution chosen in this case was to
use an application isolation application called Softgrid.

This application, acquired by Microsoft in 2006, is
called Microsoft Application Virtualisation. The App-V
stack sandboxes the execution environment so that

Who Moved My Servers?

68

an application doesn’t make changes directly to the
underlying operation system and file system, but rather
is contained in a bubble.

A technology known as containers performs a similar
function to enable applications and services to run in
a bubble – also known as a container. Docker provides
isolation between applications. It does simplify the
deployment to a degree: however, with the cheap and
abundant availability of virtual machines, especially
those built with the immutable model, deploying to
containers is as easy as building a new cloud server.

There’s a growing desire for the server aspect to be
completely obfuscated from the developers, thus allow-
ing the developer to deliver a working container and
easing deployment. Amazon Web Services provides a
serverless product that runs on top of their container
management service to enable the easy deployment of
these images and containers. With the ease at which
virtual servers can be built and destroyed, Application
design with the twelve factor Application principles,
and cloud architecture, servers or containers can pro-
vide a stable and well-performing platform for your
network service.

Cloud Infrastructure Solutions

69

Automated and self-serve
development environments

Imagine a server is built from code and in an automated
way, duplication of a server is easy, and while the initial
development may take longer, you have faith that it can
be replaced easily and quickly when the time comes.
This is true for development and production level
servers and services. Having the definitions of your
servers in code (Infrastructure as Code, IaC) enables
the automatic provisioning of server roles.

Often configuration is split into roles, such as web
server, database server or application server. With
these roles defined, your development team can request
one or many servers based on these templates, and the
request will take only minutes. This removes obstacles
and friction, giving your developers a production-like
environment for them to write, test and deploy their
code. This in turn allows the teams to deliver quicker
and faster, with production-ready and fully tested code,
for your customers.

Having a reliable development environment that you
can destroy and rebuild, enables the trust needed to
save money on the weekends.

Who Moved My Servers?

70

Saving money

The cloud enables a pay-for-what-you-use model. This
enables services to run idle on a small footprint if the
service isn’t experiencing a high load. This in turn saves
money by not running unnecessary compute resources.

When you know you can have a working server set
up in minutes or seconds, it doesn’t seem too hard to
switch it off and destroy it when you or your team
have gone home for the night or weekend. Running
the servers during the week saves you over 25% of the
cost of running a server in the cloud because you’re
not running on – and therefore not paying for – the
weekends.

MoneySuperMarket ended up with a similar solu-
tion after my team set up a system for creating and
destroying the Data Lake development environments
every day. The server roles were well defined, the
data was backed up, and at 7.00 pm every night the
servers would shut down and be destroyed. For the
next eleven hours, they were not charged for servers.
Then at 6.00 am the automation would kick in and build
the whole dev environment, restore the data, ready
for the teams at 8.00 am. To the team it was if they had

Cloud Infrastructure Solutions

71

never been switched off. To the finance department,
they just saved nearly 50% of the server spend for that
team. When you consider the automated build didn’t
do anything on Saturday or Sunday, the cost falls to
thirteen hours × five days vs. twenty-four hours × seven
days, resulting in only 38% of full-time running costs.

Application high availability and
performance

Scaling in, down, up and out

Handling more demand from your customers can be
tackled in one of two ways: bigger servers or more serv-
ers. This section will share the pros and cons of each.

Autoscaling clusters not only ensures your application
is serving your customers, but it can do it without staff
intervention. With some situations, planning may be
required to make it smoother – for instance if you’re
about to run an advertising campaign.

Who Moved My Servers?

72

CASE STUDY: AXA WEB APP SCALING AND
LOAD BALANCING CASE STUDY

One of the web server applications run by AXA
company runs on a typical.NET stack; there’s a load
balancer in front of the user facing web servers,
balancing load between the two front-end servers.
A few users of the system would state that they
sometimes had to log in more than once while using
the system. This occurred when the load balancer
deemed one of the servers too busy and would
switch the user’s session to the other server.

It would only do this at peak periods due to sticky
sessions: the load balancer would fill up one server
first, then start sending sessions to the other servers.

The web servers had been set up to store the user’s
session data in a shared database cluster instance.
As per best practice, this data was encrypted in
the database. Due to an oversight in the initial
configuration of the servers, each server had its
own encryption key and thus could not decrypt any
sessions created by the other server. Once identified,
the fix was easy. The development team worked
quickly through the test environments to implement
a shared key in the application.

http://www.typical.NET

Cloud Infrastructure Solutions

73

It was also found that once the servers shared the
session data using the same key, the sessions were
no longer required to be sticky and the load was
more evenly balanced across the two servers.

Data persistence

A cloud-first application is said to follow the design
principles laid out in the twelve factor application.3

This is a methodology which includes:

•	 Processes: Execute the app as one or more state-
less processes

•	 Concurrency: Scale out via the process model

•	 Disposability: Maximise robustness with fast
start-up and graceful shutdown

•	 Dev/prod parity: Keep development, staging and
production as similar as possible

•	 Logs: Treat logs as event streams

3	 https://12factor.net

https://12factor.net

Who Moved My Servers?

74

Most of these reinforce the notion of short-lived, dis-
posable and stateless servers.

This presents a few challenges with storage of data. In
flexible and on-demand environments, some of the
data is needed so tasks can pick up from where they
left off; databases, file stores and content for example.
In the design of the environment will be the need to
persist data from one server to the next in the event the
entire environment is switched off overnight between
rebuilds.

Keeping this data accessible and fresh requires some
thought, as in our ‘everything could fail’ scenario. That
data will need to be in at least two places to sustain
a failure of the disks. Once it’s in at least two places,
keeping the two places coordinated presents another
situation to overcome.

75

FIVE

Problems

In the previous chapter we covered some great fea-
tures of cloud deployments, but unless the applica-

tion and staff resource are running with DevOps and
Agile values, the business could invest without seeing
a great return.

With the cloud model you only pay for what you use,
and matching demand saves money compared to the
persistent model where you would have to provision
servers at maximum capacity all the time.

However, due to this transient nature, in addition
to hardware failures and aggressive money saving
deals where you can bid for spare capacity for a much

Who Moved My Servers?

76

cheaper price, your server needs to be able to recover
quickly from failures. This must be considered when
designing the infrastructure and application for deploy-
ment to the cloud.

Built to fail is a paradigm you must adopt. Google and
Amazon build their own servers as cheaply as possible
knowing that even if they used name brand servers,
components fail at least 4% during the first year – and
this increases as the server and components get older.4
If you’re going to get a failure anyway, why not save
money and design around the failure.

Disaster recovery

A cluster gives your application a certain level of
resilience against failure, and gives your team time to
replace or perform routine maintenance on any one of
the nodes in a cluster.

While it’s possible to have a cluster of one server, in
most cases this doesn’t give any protection against
failure of that server. Clusters of two or three servers

4	 www.statista.com/statistics/430769/annual-failure-rates-of-servers/

http://www.statista.com/statistics/430769/annual-failure-rates-of-servers/

Problems

77

usually have a much larger number of nodes possible,
depending on the software running on them.

It’s best practice that all cluster nodes are as close to
identical as possible. Of course, some differences will
exist, such as internal hostname and IP addresses; how-
ever, the software installed (and the versions) should
be exactly the same. Configuration control gives you
that certainty here also.

To help this, Amazon Web Services and VMWare pro-
vide the ability to create a template server image from
which to build your new nodes, and keep differences to
a minimum; this also brings the mean time to recovery
or build time for the node to a very short time. As you
will see later, this can be important.

When the server fails it can be rebuilt in under thirty
minutes. The state and software configuration can
be well tested across several environments, and with
certain settings and application versions, to ensure
compatibility. They can be built on demand, enabling
either a scheduled provision of service, ie 8am to 6pm,
or based on current workload, for instance, more cus-
tomers means more servers.

Who Moved My Servers?

78

IT failures happen, and being prepared makes the path
to recovery quick and painless. Working in the cloud
makes this more important as its flexible nature gives
rise to temporary working, and physical failure is still
a risk.

This is in addition to any backup scheme you have in
place, and should be tested regularly as an insurance
policy: when you need it, you’ll be glad you planned
ahead.

Monitoring of the servers and system components
for both performance and failures will give an early
indication that something needs attention or repair.
Having alerts on the monitoring system usually raises
an incident with whoever happens to be on-call. The
worst aspect of working in operations is the on-call
rotation: once an error is detected, a human is called –
usually in the middle of the night – to fix the problem.

This manual process, like most processes, can be auto-
mated. The automated build process removes some of
the stress; however, when building an environment
many fail-safe and redundant features can be employed
to make any failure a line in a report, rather than a
business impacting event.

Problems

79

SPOFs

Single Points of Failure (SPOFs) are components in your
application that, if they fail, will cause catastrophic or
total failure of your application to deliver its output
and results to your customers and users.

Examples of SPOFs:

•	 They can be designed into the application, such
as a single write-only database server, or created
by accident, eg a new feature requiring access to
a legacy database which is seldom accessed, and
where the application checks for access on every
run and complains if it isn’t there.

•	 The database server isn’t clustered as it’s only
running on one server, which means if that server
fails, the on-call engineer will have fun using
backups to build and restore a replacement.

Limitations of budget and/or hardware is often a cause
of these issues, so in the flexible cloud environment you
can remove these dependencies.

Having SPOFs isn’t the end of your application. It may
be acceptable that if the component can be recovered

Who Moved My Servers?

80

quickly enough in the event of a failure, the impact will
be reduced or minimal.

AWS removes most SPOFs and gives you the option
of duplicating parts of your application infrastructure
to redundant sections of the cloud – where you can be
sure that any faults are isolated due to the placement
of your servers.

For instance, in the AWS London Region (eu-west-2)
there are at least two Availability Zones that are inde-
pendent from each other with separate data, power and
storage – and these have a fast network link between
them to allow clusters to communicate effectively. With
a server in each zone, any component, including the
zone, could fail with a greatly reduced impact.

Data

Replacing a server is easy. Replacing data, not so much.
In the cloud and cluster environment it’s not enough
to have multiple servers – you must ensure data is
replicated or sharded (in a database) in a way that any
failure is seamless, and recovery is automatic.

Problems

81

For static data, this is a simple case of having at least
two stores of the information and copying this to the
servers on creation. Depending on the size of the data,
this could significantly increase boot to serve time.

For dynamic data, such as that in a database, replication
in a cluster can save the system from some failures.
Vertica (Column Storage database) uses a type of RAID
(Redundant Array of Inexpensive Disks) to not only
speed up queries, but also to guard against a node or
multiple nodes failing.

Database sharding is also a popular practice, where
related data is stored together and replicated between
two or more services. Elastic Search is a good example
of this kind of data redundancy.

Configuration creep

Long uptimes used to be the holy grail of stability. If
your server didn’t need a reboot for days or months,
this was perceived as a badge of honour. But the longer
a server exists, the more changes occur on that server,
leading to a creep of the configuration from when it
was built. In the case of clusters, where manual main-
tenance occurs, this can lead to cluster nodes no longer

Who Moved My Servers?

82

being identical. This can cause corruptions, spurious
errors and make additions to expand the cluster, or
replacement in the event of failures, difficult or even
impossible.

During my time at Sanctuary Housing, a project called
for the use of a new database. As the database needed
some redundancy, rather than building a new database
cluster, the existing Microsoft SQL server cluster was
to be expanded and needed an extra node to handle
the extra workload.

As this was a physical on premises cluster new hard-
ware was ordered. Since it had been a few years since
the original nodes had been built, this was a newer
model. It shouldn’t have presented much of a problem,
as this was from a major hardware vendor, the specifi-
cation of the server was nearly the same, save for some
updated component, like CPU, motherboard revision
and BIOS updates.

While waiting for the new server to arrive, paper-
work and processes were followed to create a change
window. For the duration of the upgrade, the cluster
would have some downtime and affect the existing
applications that relied on that server. Due to the ease

Problems

83

of creating new servers, each application would have
its own cluster now.

The server was deployed with the operating system by
the first stage automation. The rest of the new server
configuration was done by following the documenta-
tion for the cluster and verified with the master node.
At this point the new server was nearly ready to meet
its new colleagues.

The plan was set, and this wasn’t the first time a new
node had been added to a windows cluster. As it
involved software installation, server reboots, net-
working setup and configuration, we opted for an
overnight change window that started after business
hours. As the change window approached, we ate pizza
in preparation for the task ahead.

However, one of the nodes didn’t match the configu-
ration close enough for the cluster to form a quorum.
The software complained about a mismatch. We tried
everything during the generous change window. As
it approached midnight, we were getting tired and
the server was still not welcome as a new node in the
cluster. In the end, we had to back out the changes and
restore the cluster in its prior state, abandoning the new
node expansion.

Who Moved My Servers?

84

Delicate servers and services

In some situations, where a server is difficult to build
and configure, some actions are difficult to replicate
even with the best documentation. This can lead to a
delicate server, where perhaps the knowledge to keep
it running lays in only one or two staff and can easily
take days to recover when failure occurs.

Decommissioning of this server may be part of a bigger
project. What about migration?

Moving the server to a virtual infrastructure reduces
the risk associated with hardware failure. This doesn’t
have to mean the cloud. Should your organisation have
a VMWare cluster available, this would be a sensible
first step. With the threat of hardware failure appeased,
some of the risk is removed.

Migration of the server to the cloud gives other options,
such as a full server snapshot every day, with the hope
that should the worst happen, at least the server can be
restored to the day before.

The long-term solution would be to migrate the
roles away from the server over time. Unless this is a

Problems

85

monolithic application, decommissioning or replace-
ment should be considered.

Service discovery and DNS

A core infrastructure component allows your customers
and components of the application to find endpoints.
These are points or addresses that provide the interface
into the application.

DNS, Domain Name System, was created in 1983 as a
way of resolving names like mail.example.com or www​
.google.com to IP addresses, so that the network connec-
tion could be established. Before this, networks were
small enough to enable Stanford Research Institute to
maintain a text file to do the mapping called hosts.txt.
This approach is still used in small private networks.

There are millions of domains, containing millions of
websites. DNS enables us to go to a website without
worrying about where it is. To make this process quick,
a lot of DNS data is cached and managed by what DNS
calls TTL (Time To Live). For static servers this works
fine; however, if internally your tier three or four, or
microservice application lives on short-lived cloud
servers or containers within Docker or Kubernetes™,

http://www.mail.example.com
http://www.google.com
http://www.google.com

Who Moved My Servers?

86

this caching could cause the application to fail due to
stale information.

The answer to this is service discovery. Essentially
this set of tools enables the component to register its
address with a central service and a monitoring service,
and if it’s busy, overloads or dies, a deregistration pro-
cess kicks in, enabling only good services to be found,
with the bad service records removed from the system.

Consul™ provides all the above for your services. It
provides additional functions too; however, I would
be clear on what you want each installation to do and
keep things simple with one installation per role or task.

Another approach is a somewhat custom tool, where
the server registers itself with a dynamic DNS service,
such as AWS Route 53, with a short monitoring cycle,
that renews the subscription say every five minutes.
Using Sensu and plugins will be able to do this.

Costs

A word of warning: just migrating existing servers and
running them twenty-four hours a day, seven days a

Problems

87

week may end up costing you more than a comparable
data centre based server.

Cloud providers will provide discounts if a service
usage is committed to. AWS enables reserved instances.
These are credits that you pay for upfront and get a
discount on the hourly rate. GCP gives a discount based
on the instance’s uptime: the longer it’s up, the bigger
the discount.

For example, maybe you agree to pay for a specific size
of AWS instance for three years, based on 100% usage
or uptime. Committing to this timeframe earns you a
discount on the regular on-demand price, which can
be further reduced if you’re willing to pay for a certain
chunk of the bill upfront.

Amazon Web Services also provides the facility to
request a spot instance. Due to the number of physical
machines in each data centre, if there’s spare capacity
this is auctioned off using the Vickrey auction method.
This means a server is provided at a low price, but if
the demand rises, the server will be shut down if your
maximum bid is not high enough. This is useful if the
server can work on jobs that can be interrupted.

Who Moved My Servers?

88

As the cloud is a pay-as-you-go service, savings are
easily achievable if you exploit its elastic nature.

In addition to using spot instances, having a scheduled
time for the servers to be available can provide signif-
icant savings over constant use.

SECTION 3

SOLVING CLOUD
PROBLEMS

91

SIX

System Development

The full Systems Development Life Cycle (SDLC)
follows the inception to grave lifetime of a product.

The basic steps for the full software cycle are inception,
planning, analysis, design, implementation, mainte-
nance and decommission (grave).

Unless you are working at a start-up, some of the
infrastructure required for software development
will exist already. I will cover this shortly in DevOps
environments.

A project (or indeed a start-up) will have some sort of
spark idea or workshop that starts with its inception.
Planning requires an approach based on products rather

Who Moved My Servers?

92

than projects. This perspective focuses on the entire
lifetime of any product created, which is quite different
to a project lifecycle to create something new or as a
replacement. I see lots of legacy applications within
organisations because decommissioning is not part of
the project that replaces the superseded application.

For agile application development the steps are:

Inception

Inception includes determining the initial and clear idea
of what the system or software is to provide.

•	 What problem will this solve?

•	 Who is the audience, customers, stakeholders, etc?

•	 What features should the minimum viable prod-
uct have?

•	 What funding is available for the lifetime of the
system?

In many ways these are like the questions posed by
a new business start-up. I’ve seen larger businesses
create a separate entity to facilitate delivery of a new
thing without the overhead of the larger organisation.

System Development

93

DevOps environments

Alongside the discovery and design steps of a project,
the developer, infrastructure and server environments
are also designed and set up. This foundation layer
contains a few key services required in any setup and
a few that may be bespoke for the application.

Developer environment

The bare minimum for the developers to produce effec-
tively is a CI system such as Jenkins and a source code
repository such as Gitlab. These can be provisioned
privately, or public services can be used. This will also
be required to store configuration information and to
enable the automation of infrastructure testing and
build.

Infrastructure environment

This contains basic services. This list can be longer or
shorter depending on the product delivery, and as a
starter, it looks like this:

Who Moved My Servers?

94

•	 Network design and security: At the design level,
the application or service will exist in a network
and some of it isn’t required to be public. Part of
the network design shows where components
exist at a network level, and these network sub-
nets need to be created in line with the design and
for expansion.

•	 DNS and service discovery: AWS provides public
DNS to its subnets, but if you’re interfacing with
an internal organisation, you may need further
services. AWS Route53 does offer internal DNS,
so this may be utilised. Service discovery comes
in the form of Route53 scripts. Other solutions,
including Consul, may be helpful for tighter ser-
vice discovery with monitoring and support for
flexible environments.

•	 Secrets and Certificate Authority: All traffic
between microservices should be encrypted with
TLS, and while self-signed certificates are okay
for the proof of concept stage, when clients are
connecting to the service a trusted certificate will
be required. Tied closely with this is secret storage
for a secure way for application and service com-
ponents to collect secrets and sensitive informa-
tion required by the service.

System Development

95

•	 Artefact and repository caches: During the appli-
cation build processes, binaries and artefacts
are created prior to deployment. These can be
stored in a version-controlled environment ready
for the deploy process to pull them. In addition,
should internet access not be readily available,
caches for various repositories are also advisable.
While many mirrors exist for Centos, Ruby Gems
and Pypi, you may wish to have a local copy to
improve stability and to build servers or images
from.

•	 Automated image creation: To speed up the
build and recovery of servers, an automated
process to create server images, while not needed
early in the project, will speed up production
deployments. I would recommend Packer from
Hashicorp.

•	 Monitoring and logging: During the software
development cycle and production operations,
the application will be logging information and
performance metrics so that bugs can be captured
and bottlenecks can be rectified. This information
is best collated in a central logging area, so that
displays can be given and retained for analysis
after the server has been replaced. This system
will also alert support when something has been

Who Moved My Servers?

96

discovered as malfunctioning or server limits are
being tested. Examples that can be utilised are
Elasticsearch with Logstash and Kibana (for stor-
ing the data), Sensu (for metrics and alerting), and
Smashing (for dashboards).

Discovery, research and development

Most projects start at this stage with the foundations
already set up. During this time, user requirements are
gathered, tested and researched, and a clear idea of the
problem to be solved and the minimum viable product
is sketched out.

Following an iterative development process, the servers
and software are set up to deliver value to the client
one step at a time. This can be off the shelf or enterprise
software as well as complete custom-made applications.

During this phase, testing and continuous integration
are important as ever in order to get feedback from
the systems and the customers to ensure value is being
added. When the solution is mature enough, which
might be days or weeks depending on the complexity
of the initial steps, it’s deployed to production.

System Development

97

Production

A system doesn’t stop development just because it’s
in production. However, the non-functional require-
ments are usually more important when the service
is in production or public facing. This is where the
monitoring of performance, and the logging of metrics
and errors, provides vital feedback to the development
teams while providing the best possible service to the
customer.

Maintenance

Further to the development release cycle continuing to
upgrade the production system at whatever rate your
organisation is comfortable with, the performance and
security of the system also requires maintenance.

The dependencies on your servers will be experiencing
upgrades as new bugs are fixed and security patches
released. In addition, should the customer base for the
application grow, then performance metrics will be
assessed to ensure that enough servers are available to
keep response times within acceptable levels.

Who Moved My Servers?

98

Decommission

Finally, when the application comes to the end of its
life due to major upgrades or replacement, the legacy
is decommissioned. Often this step is missed as it’s usu-
ally far removed from the team setting up the system.
However, it’s an important step to save the company
money from the costs associated with maintenance and
an application that is no longer providing value.

My Four Steps for a successful
cloud deployment

Step one: Application designed for cloud

As the cloud is a pay-as-you-go service, the applica-
tion should be too. AWS’s CTO Werner Vogels speak-
ing at Amazon re:Invent said ‘While an Amazon EC2
instance might look like a server to you, it is not a server.
It is something you can switch off, it is a software
component.’

With a disposable approach to servers and therefore
the services that run on them, this means considering
start time, ungraceful shutdown, where the data lives,
and automation.

System Development

99

Many applications designed to run on cloud can recover
from infrastructure failure by building themselves
quickly, avoiding stateful and important data stored
on the servers wherever possible, replicating data to
preserve it, and doing all this with as little human
interaction as possible.

For the infrastructure do this, DevOps borrowed from
developers and created automated programs to do the
heavy lifting involved in building server environments
and recovering.

By moving to a programmable model and storing the
instructions to build the infrastructure in the form
of executable instructions, the servers can build and
recover themselves. This is known as Infrastructure
as Code.

Imagine the instructions ready to be executed for an
installation of SAS, where at the click of a button and
a few parameters, an environment or service group of
servers is created, built, configured and commissioned
ready to work. This repeatable program empowers the
developers to create their own version of the produc-
tion servers, so that whatever they create and test is
working in a way that the production version of that
service is configured.

Who Moved My Servers?

100

This is because both have been created from the same
code and instructions. This immediately removes the
complexity and risk associated with deploying to pro-
duction, as it has been tested and running in a near
duplicate.

This infrastructure code is designed with cloud failures
in mind to enable fast recovery. As it is code, it can be
tested.

A tool for defining and running code to create infra-
structure is called Terraform by Hashicorp. This is an
open source tool owned by the community. With a
collaboration mindset, this project is alive with updates.
This tool enables instructions to be written, accessing
providers of cloud services, AWS, GCP, Azure, with
new features added to the tool as quickly as it can be
ordered via the cloud provider’s API.

Once the infrastructure and servers have been created,
the servers need to be configured. The three leading
tools for this are Puppet, Chef and Ansible. All three
can be used in an immutable way, allowing the serv-
ers to build themselves and enabling fast scaling and
recovery from failure.

System Development

101

Step two: Automated infrastructure for your build, test,
deployment and operation

With the infrastructure definitions available as code,
the process to deploy the infrastructure can use the
same methodology as the developers, to build, test and
deploy using pipelines. This does mean the tests have
to be written with the infrastructure code, but once
this is done it gives a massive safety net for the team:
great tests mean more reliable code and more reliable
operations.

In this way the infrastructure code can be tested in
the same way as the application code. Developers in
the same team as DevOps enables this close circuit
of testing and feedback, providing faster and shorter
deployments through automation.

For this to work best DevOps needs an infrastructure
development environment. This enables build and
testing of infrastructure code without getting in the
way of the developers.

Nothing tests code like deployments, so once the infra-
structure tests have been completed successfully a
deployment as often as you can should occur. In one

Who Moved My Servers?

102

team I worked with, the four development environ-
ments (including the DevOps environment) included
the same code (with different versions) which rippled
through each morning.

Every day the environments would be built by a
continuous deployment pipeline in Jenkins with the
infrastructure and developer code. This enabled mas-
sive confidence in the code by the time it reached pre-
production and live.

Alongside any new features and services was a test to
ensure it worked as planned, as well as further tests to
monitor the application behaviour and status as it was
running. An essential part of deployment is operations.
It’s at this step that monitoring of the servers, services
and applications gives peace of mind that all is okay, or
in the event of a failure, a quick and precise clue as to
what component has failed. Just another fast feedback
loop for improvement.

Having a dashboard with coloured boxes and graphs
to show status and performance is a great thing for the
work area – and for everyone to see and keep an eye on.
Anything red on the dashboard will get attention by the
team long before any symptoms show in the applica-
tion itself. This is partly due to the fault tolerance built

System Development

103

into the servers and the application, and partly for the
users to notice.

As an aid to diagnosing performance issues, save appli-
cation log information to a file or output stream. This
valuable information needs to be stored safely, and
since we’re operating in a disposable environment,
somewhere other than the server the application is
running on. The popular ELK or Elastic stack will
certainly help. Not only does it store logs efficiently,
more importantly, it allows for the easy searching and
interrogation of those logs.

No deployment would be complete without a way for
users to find the service they need. In a microservice
application, there can be many such moving parts.
Service discovery is the technology used to track where
these parts are so the application or users can find the
relevant pieces. DNS can perform this task, but as
mentioned earlier, Consul may well be best for your
systems.

It’s worth mentioning Docker at this point. Using this
tool simplifies the development and deployment of
software components by wrapping them up in a self-
sufficient unit, which enables the deployment to be as
easy for production as it is for any other environment

Who Moved My Servers?

104

on its path through testing. Be wary of local data in
the Docker container though, and as for any cloud
application, local data is discouraged.

Step three: Scaling for flexible workloads

One of the most attractive features of moving to the
cloud is the ability to scale applications quickly based
on workload. This burst feature enables the systems to
call on extra resources when needed, and possibly more
importantly, release them once the demand drops so
you’re not paying for servers to sit idle.

There are three parts to enabling this function for your
application:

•	 Access points or load balancers

•	 Monitoring and automation systems

•	 Tuned metrics to control or trigger the automatic
scaling up and down

Access points or load balancers provide a clear point of
entry to the application. For a web server, this is what
sits behind the website address, but in front of the web
servers producing the web pages. Having a known

System Development

105

entry point means the application can divert the request
to wherever is best to deal with that action at that time.

As mentioned in the AXA web app scaling and load
balancing case study, the application may need some
awareness of the load balancer – so they work together.
This may require some design and development time
to ensure the APIs and microservices can reconnect (in
the event a server disappears mid-query) or share data
appropriately knowing the server is in a team.

The monitoring and automation systems are then made
ready to enable multiple services to be created and
destroyed based on demand automatically. Auto scal-
ing is where the automation follows rules based on
some metric describing the performance of the appli-
cation, so that resources are added and taken away for
consistent response times.

Scaling out and in relies on a rule. This rule is based on
a metric, CPU usage, user requests or memory usage.
This metric must be chosen carefully for its ability to
measure the load on the servers if it’s to increase service
capacity when required.

Scaling out is easy – scaling in, however, is a little
trickier. Servers and applications create data, either just

Who Moved My Servers?

106

logs and activity or new inputs such as photos or status
updates. I will talk about data in a moment. The other
thing that makes scaling in difficult is when to judge
that the server is no longer needed or being accessed by
your customers. A simple delay in the rule’s execution
will help slow the automation so it doesn’t react to a
sudden spike or drop in traffic, where the demand
would have changed before the server can start or stop.

The load balancer will be able to stop traffic going to a
server when it’s no longer needed – this is called drain-
ing connections. Once this is complete, the server can
shut down. The application may also need modification
to allow this, ensuring that a user connection doesn’t
need to stay connected to any server specifically due
to local data.

Step four: Keeping the data safe

Twelve factor applications introduced in chapter four
discourage any form of local data. Keeping data local
to a server may be easier and quicker, but it restricts
the options for scaling and providing redundancy for
the information.

System Development

107

Some applications, by default, expect local data on the
server. In the cloud, we cannot afford this luxury for
two reasons: should we allow local data, it will be lost
when the server scales in, or if a fault occurs causing
the server to be withdrawn from service.

Local data as opposed to shared data is required in
some circumstances and must be designed to be dis-
posable. Most services require a database. While this is
not stored on the application server and is shared, the
server hosting the database service itself needs some
form of local data to store that data. Most database
systems can be deployed in such a way that it acts as
part of a cluster and can survive any one node in that
cluster disappearing through scaling or fault. Auto-
mated systems should then rebuild a replacement
node, degrading the service while this takes place for
efficient completion.

Other forms of local data must be configured away
from their defaults to enable remote storage.

Application activity and error logs should be streamed
to a central logging service. This should be extended
to all logging on the server, including system logs and
application logs. Not only does this keep the data safe
(assuming the logging service is itself a cluster), it also

Who Moved My Servers?

108

enables easy searching and aggregation of the data for
analysis and reporting.

Sometimes overlooked are temporary files used by
the server and application. This may be related to a
user’s session, but it restricts the user to that one server,
making it difficult to scale in.

In some cases, such as WordPress websites, the data
directories can only be synchronised if the application
can be modified by in-house developers to use shared
storage. NFS, Resilio or another syncing solution
should be used to preserve and share the data among
the application servers.

Keeping data off the application servers and limited
to the shared data servers allows for better disaster
recovery, enabling a focused effort on the data services
for backup and quick service restoration following a
component failure.

Having the data in a cluster will protect the service from
hardware failure, but a bigger disaster may require
relocation of the service entirely. Data backups will
enable recovery of data to a different site should the
very worst happen. For this reason, cloud providers
have multiple sites or regions, and data can be copied

System Development

109

or backed up to another physical location. Having the
infrastructure code ready to execute this alternative
region is a worthy exercise should the cost of total loss
of service justify it.

Regular backup of the data is important for micro
restores. This is where only part of the data, otherwise
known as a granular restore, will provide a point in
time restoration following corruption or malicious data
loss. The shorter backup interval reduces the actual
data loss endured in these situations, but will take some
thought to set up.

Using the cloud as an offsite backup solution for an
existing data centre is more reliable and cheaper than
traditional tape and shipping solutions. Tapes are not
reliable when it comes to restores, and the process by
which the tapes are recovered before restoring can be
lengthy, making the cloud an attractive option.

CASE STUDY: DOCKER HOST ENCRYPTION

Almost all applications require secrets or
configuration data to function. Username and
passwords to databases, encryption keys, and
company specific information. One of my clients

Who Moved My Servers?

110

stored this information in a private source code
repository but wanted it to be encrypted, obviously.
The server operations team had access to the
encryption keys but, being a busy team, wanted a
way for the developers to be in charge of their own
secrets and source code.

Definition of done: have a self-service portal that
developers can use to generate encrypted strings
of sensitive configuration data to be included in
source code. The portal should include an API, so the
deployment pipeline can request this information to
be committed by the developer.

There were a few other constraints, for example
that it must be written in a language that can be
supported by the rest of the team. Ruby was chosen,
and the deployment was to be a Docker container.
A Linux virtual machine was provided with Docker,
Git and Ruby pre-installed. This was an immutable
server in AWS built using Masterless Puppet from
an infrastructure repository in GitHub. A mixture
of Rubymine to Git and using Docker integration
allowed for the development of a Sinatra (Ruby web
application framework) app to be developed.

The solution involved three Docker containers
working together providing SSL/TLS certificates

System Development

111

for the web server app and API, a data volume that
held the public encryption keys, and the application
container that ran the web services. Joining the three
containers in this way enabled each to be updated
independently of the others. If the PKI changed, slot
in another container. Need to rotate the encryption
keys? Update the keys and rebuild the container
image.

For testing, another stub or dummy container was
added for the mail transport. As no authentication
was available for the application to use, a secure way
of sending the encrypted string was email addresses
restricted to a domain suffix.

The application also exposed the logs, requests
and usage information to Docker so that another
container would grab them and funnel them off to a
central statistics and logging service.

How does this example follow the four steps?

By developing and deploying in Docker, cloud
deployment was enabled. Having the application
stateless, by not having a login, meant a form was
submitted to the API and sent an email, so it was
scalable.

Who Moved My Servers?

112

The code repository contained a Dockerfile, which a
Jenkins job would build, push the image to a private
Docker registry, invoke the infrastructure code to
ensure a DockerHost was available, then deploy the
Docker images to it. This pipeline could be triggered
when an update occurred. This automation provided
a one-click deployment for the developer.

The self-contained nature of the Docker containers
and images meant that it could be scaled and
duplicated as required. The data inputs were not
cached anywhere, and the output was immediately
dispatched by email. The only data to worry about
was the logs exposed to the central logging service.

113

SEVEN

Automation

My highest value is fun, and ‘Automate manual
and monotonous tasks’ has become my mantra,

so we can focus on and have more fun.

In this and the following chapters, I will share the
method and technologies that I use every day to auto-
mate data centre and cloud services, as well as Ama-
zon’s cloud services.

‘You cannot automate a process that does not exist.’
– IBM

Before we can go about automating a process, we must
understand how to do it manually. You must be able

Who Moved My Servers?

114

to do something manually and in small easy steps, so
simple that you can tell a computer how to do it. I’ve
read in many business books (like The E-Myth Revisited:
Why Most Small Businesses Don’t Work and What to do
About it and Traction: Get a Grip on Your Business), that
many businesses run more smoothly with an opera-
tions manual that allows any staff member to perform
the functions.

We can take that manual and automate the process with
the use of technology. This in turn makes the company
more efficient through reduced errors and costs. Not all
tasks can be automated, but I believe that that is just a
limitation of the technology available today.

Self-driving cars and drones are already here to help us
in the physical world, and software has been around for
a bit longer to help us with automatic processes. Both
Netflix and Amazon utilise automation and AI pro-
cesses to recommend that next film or book. Applica-
tions, computer games and bots provide useful service
outside of businesses too.

As I mentioned earlier, when I was working for a
national social housing provider, a rite of passage
was to build a Citrix server. The architecture of IT was
that of dumb terminals installed in remote sites that

Automation

115

were not much more than a screen with a keyboard
and mouse. All the computer power was provided by
central servers with many of the staff sharing a server
with a desktop for them to see on their local screen.
These central servers ran Citrix and Terminal Services.

Setting up a new Citrix server involved taking a brand-
new server out of the box from HP, installing the CPUs,
memory and disks, then fitting this into a server rack in
the data centre. After plugging in the various essential
cables and switching it on, a small automation process
would load Microsoft Windows onto the new server,
then the technician would follow a list of instructions
to complete the configuration.

Initially this was manageable. However, as the com-
pany grew bigger, building one or two servers a week
wasn’t enough, and more technology was deployed to
automate more of the steps.

The physical aspects of server setup are reduced with
virtual servers, and cloud providers make it no longer
necessary. Thanks to advances in CPU and computer
capacity modern servers are very powerful. To improve
efficiency and utilisation of hardware (physical com-
puters), virtualisation is a way of running more than
two logical computers in an isolated way (they are not

Who Moved My Servers?

116

aware they are sharing) on the same physical com-
puter and therefore share some of the capacity of that
machine. This gives cost savings through better utili-
sation of hardware, space, cooling and other physical
requirements, while delivering the same level of results
from the virtual servers.

Many businesses already have data centres of their
own and run virtual workloads with technology from
VMWare, Citrix Xen and Microsoft. Private cloud refers
to the ability of internal staff to order virtual servers on
demand, without the direct intervention of IT or using
an external public cloud.

To facilitate and manage virtual servers, there are pub-
lic cloud providers where you can purchase virtual
servers on a pay-as-you-go basis. They also manage the
infrastructure, data centres, network, etc – removing a
lot of the admin and miscellaneous overheads.

Amazon Web Services (AWS) is the world’s biggest
public cloud provider. Created for Amazon.com, AWS
is the infrastructure that Amazon uses itself to run its
business and websites. Spare capacity was created to
allow Amazon to grow, and this now gives the oppor-
tunity for other businesses to use this spare capacity
for themselves.

http://www.Amazon.com

Automation

117

The key to consistent results is automation. Have serv-
ers build themselves from code and configuration that
you and your team specify. This is where the developer
world has had the biggest impact on the infrastructure
and operations world.

Imagine clicking one button (or less if you schedule it)
to build a complete application environment – from
nothing to a complete server farm ready to serve your
application. Depending on the size and complexity of
your application, this could be from ten minutes to two
hours. Putting together a few tools that work together
can achieve this for you and your company.

Building servers

Server builds should be automated, as this enables easy
creation of ready for work servers. They rely on some
infrastructure and data to enable this.

•	 Operating System (OS) images

•	 Packages to Install, including dependencies and
Docker images

•	 Configuration of the server and applications, usu-
ally kept in version control

Who Moved My Servers?

118

•	 Network infrastructure (this too can be created by
automation)

•	 Scheduler (to trigger actions based on time or
other inputs)

•	 Certificate Authority (to enable Private Key Inter-
change for secure inter-server connections)

•	 Identity management (to control who has access
to the server)

•	 Data and network connections as required

•	 Service Discovery or Domain Name Service (so
the client can find the service to connect to)

Pipeline

OS Image

Base Image Install Packages Configure

Logging & Analysis

Metrics & Dashboards

Monitoring & Performance

Logs

Customers

Figure 7.1: Immutable server builds

Automation

119

Ordering servers from internal virtualisation or exter-
nal cloud providers means for every order, someone
or something needs to build and configure that server
for it to be useful and effective.

It’s at this point that the capacity of the server needs to
be decided. If the server is part of a software deploy-
ment, the architect may already have scoped and spec-
ified the size and number of servers required. This
answers questions like: How fast and how many CPUs?
How much memory? How much hard disk storage?

Virtual servers allow the choices to be easily changed
later when more evidence related to real-time running
of the server is known. The servers can be upgraded
or even downgraded as the load changes dynamically.

Creation and management of these servers is achieved
through a web interface. VMWare has VSphere, and
the main cloud providers AWS, Azure and GCP have
powerful web consoles.

You could do it this way, but it’s not very automated
or easily repeatable. Infrastructure as Code does cover
this aspect too. Some companies may have their own
tool for managing servers through the API, but due to
different implementations, this might lock you into a

Who Moved My Servers?

120

cloud vendor, giving someone a lot of technical debt
in refactoring code to work with a new vendor, should
that choice be needed.

An alternative is to use a service like RightScale™,
where they provide a web console and an API to man-
age servers, leaving their systems to deal with the
complexity and differences between cloud providers.
However, this could be another vendor lock in.

Fortunately, an open source tool called Terraform has
this functionality programmed into it. Each cloud pro-
vider is a module within the code, allowing for slight
differences between them, but due to the shared nature
of servers, the same components exist and just might
be called something different. Those differences are
contained with configuration. With the flexible nature
of Terraform and its modular approach to configuration,
the differences can be minimised, relaxing the cloud
vendor lock in issue.

If the configuration is designed with variables and
modules, the variables holding the important stuff like
server names, roles, size, etc, and the modules holding
the cloud provider’s specific nomenclature, swapping
a module out will effectively swap the vendor. There
would be a small number of other changes required,

Automation

121

such as the back-end configuration (this is a state infor-
mation cache for Terraform, so it can keep track of what
it has done to eliminate duplication of effort), but it’s
less than if a custom tool was created.

With the physical provisioning of the server being
provided for us, that leaves the following stages:

Bootstrap and base image

Any computer needs instructions to know what to
do – the cloud is no exception. Rather than starting
from a blank disk, cloud vendors provide base images
to boot your new server from. These can vary wildly in
functionality, from the basic operating system install
to fully loaded software packages. The option to create
your own also exists.

Like any software, these images need to be created and
kept up to date. Of course, there are automated tools to
do this, like Packer (www.packer.io), where a directory
of files including a configuration file is loaded and an
image is created from the results.

There is a trade-off between how much software is
baked into the image and how often the image needs

http://www.packer.io

Who Moved My Servers?

122

to be updated. The more software that is contained
within the image, the more likely it is that one or more
of those software packages will need an update. If it’s
automated, then the cost isn’t more than a little more
disk space, and some downtime (if any) to update the
servers that were booted with that older image. If your
servers are being destroyed every day, then there is no
downtime.

Install packages

Additional software is required to run after boot. A
template is used for virtual servers and further required
software is installed. Depending on how much is baked
into the boot image, this step may be merged with
configuration.

At this point common software is installed if it’s not
included in the boot image, such as tools for source
control, operations utilities including trusted root cer-
tificates, and other general use programs like Python,
Ruby, etc that will help all steps from here on out in
your organisation.

Automation

123

This stage includes the roles that the server is going to
perform. If it’s to be a DNS, then Bind might be installed.
A web server, then Tomcat or Nginx.

Usually roles must be configured to work correctly,
and this information may rely on private or internal
artefacts (bundles of code), secrets (passwords and
other sensitive information not stored in source control),
and perhaps private repositories for custom tools. This
shared configuration is usually done before the main
application is installed and configured.

Configure

During this stage, the required settings are supplied so
the installed software can operate.

Configuration management is used for installing and
configuring software for consistent results. The main
software is installed and configured so building the
server is part of the software deployment steps.

Puppet and Chef (Chef is a fork of Puppet) are config-
uration management tools. They enable you to specify
how you want your server built and configured through
settings and shared modules, then they do the rest.

Who Moved My Servers?

124

This configuration management isn’t a one hit wonder
though. The configuration can and should evolve with
your environments and be updated as often as required
for bug fixes and security updates.

Serve

The server is now ready to perform its purpose. It
should take less than ten minutes to get to this stage
from boot. Tools like Docker can reduce this by reduc-
ing the install and configure steps by deferring the
building of containers to another process, leaving the
server to just download them. Docker does this by
baking everything into the image, so the boot time can
be reduced to a time measured in seconds.

Monitor

Once the deployment steps are complete, a quick ver-
ification of the service by a task called a smoke test,
alerts the rest of the infrastructure the server is ready.
This might mean adding the server to a dynamic load
balancer.

Automation

125

As the server performs its role, it will be subject to CPU,
memory and disk usage. These as a minimum are mon-
itored and the metrics are stored for later diagnostic use,
and for the measuring and reporting of alarms. These
alarms are set up to watch for scenarios such as high
CPU usage over a period of minutes. This can happen
at peak usage, and with the correct configuration, more
servers can be quickly added to the cluster to serve that
demand. It’s usual to have a low CPU alarm, and this
indicates when there are more servers than required by
the users thus enabling the cluster to be scaled in and
reducing the number of servers in the cluster.

Many metrics and statistics should be gathered and
stored from the server in the event of a bug or other
error. Having this data will help the engineers diagnos-
ing the issue, and give them the opportunity to further
improve the system.

The most popular open source monitoring stacks are
made up of tools consisting of three parts:

•	 Monitoring/Alerting: Sensu is an open source tool
that runs scheduled tasks against your servers
called checks. With a wide range of plugins, this
tool written in Ruby collects metrics and statistics
from your servers. Uchiwa is an alerts dashboard

Who Moved My Servers?

126

working with Sensu, where it displays the status
of the agents and servers, giving the option of
raising alerts if any of the checks indicates an
issue.

•	 Logging: The ELK or Elastic stack consists of a
group of tools including Elasticsearch to store
data, Logstash to interpret logs from the servers,
and Kibana for visualising and searching through
the logs.

•	 Graphing or visualisation: Once the data and
logs are gathered, there is nothing like seeing a
dashboard or graph on the screen. Grafana ena-
bles beautiful graphs of performance point series
data to be displayed as a graph, together with
threshold highlights. In addition, Smashing is
very flexible for displaying statuses of servers, ser-
vices, and even pipeline information if connected
to a CI server like Jenkins.

This allows for the classic method of monitoring a server
or service. USE, created by Brendan Gregg,5 treats this
information as a group of buckets of information.

5	 www.brendangregg.com/usemethod.html

http://www.brendangregg.com/usemethod.html

Automation

127

•	 Utilisation (U): The percentage of time a resource
is in use

•	 Saturation (S): The amount of work the resource
must complete but cannot service (the queue of
work)

•	 Errors (E): A count of errors

This makes it easy to create graphs of how busy or
utilised each part of an infrastructure is and how many
errors it’s creating. This is great for judging how busy
a server is, but doesn’t tell you anything about the
applications or services running on that server.

As an alternative to USE, application user experience-
based monitoring, Tom Wilkie developed a system
focused on application performance called RED.6

•	 Rate (R): The number of requests per second

•	 Errors (E): The number of failed requests

•	 Duration (D): The amount of time to process a
request

6	 www.slideshare.net/weaveworks/monitoring-microservices

http://www.slideshare.net/weaveworks/monitoring-microservices

Who Moved My Servers?

128

These metrics record how well the microservice is
actually performing requests and reflects the user expe-
rience more closely.

Both approaches are important as they measure dif-
ferent things. USE provides infrastructure feedback (is
the server big enough, is there enough memory), and
RED is useful for developer feedback, to improve the
performance of the service if it’s developed in-house.

Prometheus is a great monitoring tool for capturing
these from applications alongside or instead of Sensu.

By using instantly available virtual servers and auto-
mating the above steps, lead times also tumble from
weeks to days to minutes.

When building servers, I have a few principles to guide
me:

Immutable server: Once a server is built, its software,
configuration and operating state never changes. This
doesn’t include data on the server, database files and
documents. These are important and need their own
processes and management. Any updating of soft-
ware or configuration means a new server is built and

Automation

129

the old one discarded, often through a blue-green
pipeline. In this way, the configuration is stored in a
version-controlled repository such as Git and allows
for a known good configuration at any time.

Immutable server pattern: Most server workloads can
lend themselves to temporary or elastic capacity. For
example, your website might be busy in the afternoons,
so more capacity is required than at night time when
your customers are asleep. Temporary servers are pro-
visioned, built and configured when the demand calls
for them, and then are shut down and destroyed when
no longer required.

You should design your server to make use of dispos-
able components for every part of your application
infrastructure that isn’t the data. This means that once
the server is built there are no further changes to the
configuration or software. This gives the advantage of
knowing exactly what the server will look like with
every build, until the configuration is changed on pur-
pose and the server rebuilt.

This means that any deployment scripts will run the
same on every server based on that configuration build.
With the building of each server, a certain baseline or
base image will be used. AMIs provided by Amazon

Who Moved My Servers?

130

give a usable installation of the OS, upon which the
configuration code and build can run.

This makes the deployment easier. However, from a
security point of view, can lead to stale or out of date
packages in the image. When dealing with any sort
of image, it was stable at the point it was created and
tested, but bugs and security issues are reported and
fixed all the time, making that image a potential security
target for hackers. Source control systems such as Git,
together with a versioning scheme, will allow manage-
ment of many packages, detailing what the changes or
updates to each package are, as well as dates and other
information to make it simple to see what each package
does, when it changed, why it changed and when.

You must have a configuration management system
that copes with or can track baked in features, with a
procedure to either accept the risk, or keep the images
refreshed.

Immutable infrastructure isn’t a new thing. It was
mentioned by O’Reilly in a blog post a few years ago.7
There was a time when uptime was the key metric to a
stable server. This was back in the days when hardware

7	 www.oreilly.com/ideas/an-introduction-to-immutable-infrastructure

http://www.oreilly.com/ideas/an-introduction-to-immutable-infrastructure

Automation

131

failures could take your server offline, or software
updates would mean a reboot is needed. Working in
the cloud requires a different metric: recovery time.
This is the time it takes from something breaking or
going wrong to the service being restored again.

When a new update was made available for deployment,
a maintenance window was created where the users
could expect the service to be unavailable. Engineers
would then install and deploy the updated software
within this window, often at unsociable hours, to cause
minimal disruption to the customers.

But what if you have a server that can build itself
from scratch? Or to spread the idea a little wider, a
multi-server, multi-tier service and infrastructure
from scratch? Building servers from scratch gives
you deployment options. AWS provides auto scaling
groups. I will cover these shortly. However, they do
rely on having a server that can either build itself or
one that is using a fully baked image.

The immutable model means that your server needs to
be rebuilt to receive the updated configuration. In devel-
opment environments, where the server is rebuilt from
scratch every day, this isn’t an issue, but in the produc-
tion environment it may need a regular maintenance

Who Moved My Servers?

132

schedule, or a deployment roll-out if the architecture
of the environment involves clusters or blue-green
deployment to update and reduce downtime.

A blue-green deployment is where new or green servers
are provisioned based on updated configuration, while
leaving the current or blue servers in place. Once the
provisioning or smoke tests have passed, marking the
new servers as ready and usable, a mechanism – usually
the load balancer for that service – is updated to serve
requests from the new green servers. The old blue
servers can then be decommissioned and destroyed.
This process done correctly is seamless to the users of
the service.

Docker and containers have gained popularity as a
way of deploying software quickly. It’s precisely due
to their immutable nature that this works. A Docker
container is a small version of a server. It contains all
the software together with dependencies for the service
to work, wrapped up in an image, ready to run. They
can be created and destroyed in seconds.

Having this ability to create and destroy servers quickly
and easily means you could also take advantage of
billing choices where excess computing capacity at
the cloud provider is auctioned cheaper. AWS call this

Automation

133

SPOT pricing, and in conjunction with immutable serv-
ers and auto scaling groups, can save you a lot of money
over a large, static, long-running server deployment.

On-demand: Servers are only provisioned when they
are required. The ability to build a server at any time,
coupled with the pay-as-you-use cloud service, allows
us to build a server when we need it and destroy it
when it’s no longer required.

Known state: Building from scratch or a minimal base
image means, with the addition of software bundles,
I have all the tools available to create a brand-new
server in a known state of software and configuration
at any time.

In the talk that I delivered at Puppet Camp London in
2017, I described how you can create Puppet code to
build your servers independently from Puppet infra-
structure (Masterless). In this way, each server can be
created on its own, and you know what that server is
going to look like and perform. Details of the talk can
be found on my blog at www.neilmillard.com/blog.

Data: The architecture of the system allows for fail-
ures at any time. This means any data on the server is

http://www.neilmillard.com/blog

Who Moved My Servers?

134

replicated and has a backup. Data is the only moving
part in the system and therefore is the most delicate.
Data integrity is key in any of my designs and is usually
the reason for the server to exist. Careful management
of data will minimise data loss. It’s difficult to achieve
all three of integrity, speed and availability, but with
collaborative design, the trade-offs can be calculated
and requirements can be met.

CASE STUDY: VERTICA SOFTWARE UPDATE
WITH CONFIGURATION MANAGEMENT

The immutable model is fine for most applications,
but when you have data to consider it adds an
extra layer of complexity. In the case of a database
server, keep the information safe while updating the
software version, as well as any schema updates in
the configuration the database needs, so the next
time the server is built it is fully upgraded. Modifying
the data could cause delays and data corruption.
This is due to the old data being updated by the new
software at install.

A blue-green deployment could work here, but as a
database deals with data, you probably don’t want
two copies running simultaneously. What is needed
is a more controlled approach.

Automation

135

For MoneySuperMarket, a blue-yellow-green
deployment was chosen and deployed.

This follows the blue-green update, but with an
intermediate step. The new yellow servers are built,
the database is copied and kept synchronised with
the blue servers. With an agreed data freeze window
of about thirty to forty-five minutes (depending on
the speed of the following steps), the yellow servers
are then upgraded by an automated task, checked
for data consistency, and then shut down to make
the attached data volumes or disks available. At this
point the blue-green process continues as outlined
above, with the new green servers using the updated
disk volumes that have been prepared by the yellow
servers. Once green builds, the service is updated
and new requests flow to the green servers. The
data freeze is then melted, enabling the old blue
servers to be switched off, then ultimately deleted or
decommissioned once the integrity of the new data is
okay and no rollback is required.

137

EIGHT

Scaling Infrastructure
and Applications

Dealing with spikes and lulls in demand requires
careful consideration in order for the application

to still function at its best. Automatically scaling groups
is the ability first introduced by AWS to use monitoring
metrics to decide automatically to increase or decrease
the number of nodes in a cluster. Configuration for this
is provided, such as the server image, server type, and
how long to wait before the next step up or down can
occur. In addition, a node minimum and maximum
number is also required.

Who Moved My Servers?

138

The cluster will be monitored, and using the rules
specified in the configuration, will grow or shrink
the number of cluster nodes as required. A server can
only deal with a specific load before it reaches its own
limitations and bottlenecks.

To overcome these limits, more memory, disk or com-
pute (CPU) is added to the application. This can be
done in one of two ways: increasing the size of com-
ponents inside a server (scaling up), or increasing the
number of servers able to handle the requests in a load
balancing cluster (scaling out).

Scaling up

The difficulty of upgrading an existing server shares
many traits with creating a new server in the first place,
like ordering and lead time for the components and
setup time before the server can be used again. In a
physical environment, the application will be running
badly while you wait for the new components to be
ordered and delivered.

Once that wait is over, scheduling of the downtime
can now commence. The server will be switched off
and unavailable for use while the upgrade occurs. If

Scaling Infrastructure And Applications

139

the server should fall into the delicate category, there
can be huge risks with turning it off and hoping it can
start again without major incident.

Scaling out

Instead of the risks associated with scaling up, the ser-
vice could be scaled out and you can take advantage of
multiple servers. This will require a certain amount of
work around the application design and configuration
to enable.

For instance, you will need a load balancer, and to
make sure the application can work with multiple serv-
ers. This can either be in a true load-balanced manner,
spreading the load and users among all the available
servers, or sometimes it’s necessary to use sticky ses-
sions, where the user stays on the first server they hit for
the remainder of their session. This does risk the user
losing their session or some work if that specific server
fails mid-session. Scaling this process up into a whole
environment is easy when tackled one server at a time.

Who Moved My Servers?

140

Scaling in

Anyone can spin up a server: the challenge is termi-
nating the older servers when the demand is no longer
required.

It should be obvious that you don’t want to terminate a
server while it’s in use. Some software already exists to
assist in this. For instance, the EC2 plugin for Jenkins
will both create new slaves (servers that help do the
work with the Jenkins master) when there is insufficient
capacity to run jobs, as well as terminate old ones when
there are no jobs to run on any given server.

Load balancers are capable of draining a server in
preparation for it to be terminated. This is easier to do
when using a blue-green deployment, where a group of
servers is no longer accepting new connections. A mon-
itor task simply checks if the connections on a server are
closed before marking the server as redundant.

Your application or DevOps team will need to come up
with a way to scale in without service interruption, and
will need a robust level of design to get it right.

Scaling Infrastructure And Applications

141

Application load balancing

As the application is no longer tied to a single massive
server, why not have two smaller ones, and balance
the load between them? With this design in mind, this
gives massive wins to leverage cloud features like auto
scaling, and gives the option of choosing the best size
and cost of server for the load experienced.

This is how sites like Wikipedia can scale to serve the
whole world with their content, allowing thousands of
people to view and edit pages at a time. Every tier of the
application can run on an independent server and share
the load with its team within the load balance group.

Application auto scaling

Auto scaling greatly reduces upfront costs, and with
the flexibility of cloud compute resource, can enable
gradual increase in capacity to serve the application
with its micro service.

Scaling the application from the smallest service to
many servers in a load balance group allows the service
to remain online to all consumers while at the same

Who Moved My Servers?

142

time reducing its cost footprint to you when it isn’t
required. Auto scaling can be controlled and triggered
from a couple of sources.

•	 Scheduling based on the time of day: If you
know your services are going to be busy at spe-
cific times of day or week, the schedule can be
configured to activate more or less servers based
around these times.

•	 Compute or CPU usage: With monitoring in place,
triggers can be set up so that if certain thresholds
are passed, either on the way up (busy) or down
(quieter), the appropriate number of servers can
be made available.

•	 Memory usage: Any metric that is being moni-
tored can be used as a threshold trigger, so if this
application uses a lot of memory and that is a bet-
ter indication of load than CPU, this metric can be
used instead or in addition to others.

Putting these concepts together will result in a scalable
application, with the infrastructure to go with it. In
addition, the Key Performance Indicator is no longer
uptime (the length of time a server has been operat-
ing since the last power on or reboot), but recovery

Scaling Infrastructure And Applications

143

time – the time it takes from outage to full recovery
and serving customers again.

Provision scripts in Bash or Ruby then prepare the
server by downloading the source and configuration
and tools to build the server. Ansible, Chef or Puppet
then act on the configuration, resulting in a server ready
to work for you.

I would then ensure the server is ready by checking the
monitoring stats from your pipeline before the code
then adds it into an operation state via a load balancer
or DNS entry, ready for the users to access it.

The second part of automation is ensuring the moni-
toring continues to report the server status after it has
been built, to ensure smooth operation and to alert staff
to any potential issues.

I would write further code to run in case of a failure, like
I said, things do fail. During the architecture step, single
points of failure are identified and will be addressed by
code and monitoring. This enables the server to recover
itself when these error conditions exist. For instance,
in a database cluster, I have code that will check the
status of the cluster that node is about to become part
of during the provisioning process.

Who Moved My Servers?

144

If the cluster is operational during the build step, then
the previous server must have crashed or become oth-
erwise unavailable (switched off for example) and the
node should execute the node recovery code, synchro-
nise data, and join the existing cluster, rather than the
normal provisioning procedure.

DESTROY
WRITE

CONFIGURATION

MONITOR BUILD

Figure 8.1: Build, Monitor, Destroy

With this code in place, the cluster could lose a server
node and build a new one automatically, reducing risk

Scaling Infrastructure And Applications

145

and downtime. I have done this for HP Vertica and
MongoDB database clusters without losing any data.

The third part of the automation is shutting down and
cleaning up. For test environments, it would be reason-
able to destroy and not pay for them overnight. Because
I am confident the code and configuration can build
the server from scratch with very little intervention,
having a schedule to build it ready for the working day
following its destruction in the evening gives me the
choice to not run the server overnight.

Shutting the servers down in a controlled and clean way
is preferred, especially if we are looking to retain cer-
tain data. A backup should be taken that the server can
recover from in the morning, before the code destroys
the server.

147

NINE

Cost Control

Controlling your costs is an important aspect of any
business and project – with cloud projects this is

even more important due to the number of decisions
that can have a drastic effect on your monthly AWS bill.

The four main areas that will affect your costs are
unused or forgotten resources, AWS application design,
correct sizing of resources, and discount options such
as reserved instances.

Who Moved My Servers?

148

Unused resources

Your ongoing battle is going to be with resources that
have been created and used for a short while, then left
running or allocated to your account. With the ease of
creating resources and human nature, unless managed
these resources can be left and forgotten until someone
spots it on the itemised AWS bill.

Fortunately, there are a number of tools you can use
to help keep this spend under control. On the billing
dashboard of your account, along with a summary and
bill information, you can activate Cost Explorer, a tool
to explore the current costs incurred on your account.

For offline analysis, reports are available to a selection
of AWS services called Cost Allocation Tags. These
enable your team to tag a resource for the purposes
of tracking costs. You could use a purchase order or
project code or name to show up in the reports.

In addition to these tools, you’re also able to create
alarms via CloudWatch, to alert you when a billing
threshold has been breached.

Cost Control

149

Resources most commonly forgotten are EC2 instances,
Elastic IP addresses that are no longer attached to an
instance, unattached EBS volumes, snapshots and RDS
instances.

AWS application design

An important aspect of any workload or application
you run or plan to run on cloud services is the design
of the application and the infrastructure it runs on. This
is due to the balance between performance, availability
and cost. Let me demonstrate with two examples.

EC2 vs. Lambda

Is your microservice designed to run with Lambda?
This is where your code is designed to run without
provisioning or managing servers and executes only
when needed and scales based on demand from a few
requests per day to thousands per second.

If your code is written in one of the computer languages
that Lambda supports (Node.js, Java, C# or Python),
Lambda might be a good choice. All the power and

Who Moved My Servers?

150

flexibility without the need to manage the infrastruc-
ture and servers.

The infrastructure you already have may affect your
choice and so EC2 might be best. How do you decide?

Like many of AWS’s services, they build the Lambda
service on top of the components available to any of
their customers, like EC2 or Elastic Container Service.
They manage the infrastructure so this attracts the
management costs as part of your bill.

This billing model can work for or against you depend-
ing on the utilisation of the service. If you expect a high
utilisation level, and have the support staff to look after
the infrastructure, it’s usually better value to host the
service on EC2 instances that your team can provision,
configure and maintain.

The precise level varies per service and a break-even
chart can be created.

EC2 requests per hour AWS Lambda
Container Function

295,000 100 ms execution with 128MB

64,000 200 ms execution with 512MB

Cost Control

151

In the table, I’ve broken down the number of requests
per hour running on an EC2 m4.medium instance sim-
ilar to the Lambda container specification and function
execution time so that each line has an equal cost.

Performance testing of your application’s microservice
and typical workload are needed so you know how
many requests running on an EC2 instance would
provide adequate performance.

EC2 instances availability is nine to five or twenty-four-
seven. You only pay for what you use – so how about
no servers running at all?

Many environments exist purely for developers and
as such don’t see any activity outside of regular busi-
ness hours. With the appropriate level of provisioning
automation, whole environments can be switched on
fresh in the morning before the teams get ready to work,
and decommissioned in the evening after a day’s work.

In a week, there are 168 hours. In a nine-to-five work
week, there are only forty hours. That is less than 25%
of the time. If you only run the servers when you need
them, you can save 75% of the cost of running them
twenty-four-seven!

Who Moved My Servers?

152

One of my clients required at least one server to always
be available, and scaled the service to a ready work-
load at 7am and scaled back at 9pm. During the day,
the CPU and memory are monitored and if specific
thresholds are met, the server application increased or
decreased the number of online servers in the cluster.
Not only did this help increase availability for busy
periods of the day, it still provided substantial savings
over running a static server farm.

Another way to reduce the need for expensive pro-
cessing servers is to cache the results and output to
edge servers. These servers don’t require the process-
ing power of the main application and therefore are
cheaper to run.

These cheaper front-end servers handle many of the
requests, leaving the expensive (in terms of compute)
jobs to the back-end application servers. Delegating the
easy content to the edge servers means you require less
expensive application servers, so you save money and
increase response times to your users.

Cost Control

153

Server instance sizing

When migrating a service, you don’t have to have the
same size server (in terms of compute and memory),
which enables more appropriate sizing of the server
to be deployed, depending on the workload. As men-
tioned above, workloads can be different between the
front-end and back-end servers, and based on scaling
and workload, can enable optimisation of the applica-
tion performance as well as costs.

Often a greater number of smaller servers (rather than a
few larger servers) gives you the flexibility to follow the
workload closely. Of course, if the demand is relatively
static, that may suit your application better.

This is where monitoring can show dividends regard-
ing the utilisation of resources such as server CPU and
memory, allowing intelligent decisions to be made.

Reserved resources

AWS provides further billing options to reduce your
costs. If you know roughly what your demand for
resources is going to be, you can opt to pre-order

Who Moved My Servers?

154

vouchers to be used against charges for various AWS
resources that will discount the monthly bill in exchange
for an upfront commitment for one to three years.

155

Summary

Following the four steps will help migrate or build your
applications in the cloud.

1.	 Design the application cloud.

2.	 Automate the infrastructure.

3.	 Scale for flexible workloads.

4.	 Keep the data safe.

For more information, visit my website,
www​.neilmillard.com, where you will find
information, blogs and speaking appearances.

http://www.neilmillard.com

157

APPENDIX

Key Concepts

Information Technology (IT) has many terms that you
may or may not be familiar with. I will cover a few

here that you can probably skip over if you’re not new
to servers and cloud technologies.

Amazon Web Services – AWS

Public cloud provider. Created out of necessity, AWS
is the infrastructure that Amazon itself uses to run its
business and websites. Spare capacity was created to
allow Amazon to grow, and this now gives the oppor-
tunity for other businesses to use this spare capacity
for themselves.

Who Moved My Servers?

158

Blockers

These are issues that the team have identified as halting
or slowing down progress. They are often related to a
broken or slow business process, or a policy decision
that is beyond the control of the team.

Capital expense (CapEx)

The money a company spends to buy, maintain and
improve its fixed assets, such as buildings, vehicles
and hardware.

Computer process

A program that provides results (outputs) based on
predefined rules (program) and data (inputs).

Inputs > program task > outputs

Configuration management

Puppet, Chef or Ansible is installed as part of the boot
image and used to provision the software on the server
itself. This is a key part of the server provisioning and

Key Concepts

159

build process, as this is the chunk of Infrastructure as
Code that defines the server role and gives it tasks to
play in your environment.

Chef and Puppet both have their roots in a tool called
CFEngine. This means they share many key ideas and
are both written in Ruby. They also come from the
point of view that if the infrastructure as code defines
a desired state, then the program works, sometimes as
a series of simultaneous tasks, to make that end state
on the server.

Ansible has different roots and is written in Python. The
approach here is much closer to scripting, where the
code describes what should happen and which order
it should work through the instructions.

Containers

A subset of virtualisation, where a virtual server can
run instances of a program or service in an isolated jail.

Continuous integration

With the tests and code available in code repositories,
continuous integration allows the continuous running

Who Moved My Servers?

160

of the tests whenever a new piece of code is committed.
This enables the feedback loop to be as short as possible
and identify errors almost immediately. This in turn
improves efficiency, as the bugs are fixed before the
programming moves onto another task.

CPU

Central Processing Unit: provides the computer the
power to run programs and tasks.

Data centre

A dedicated space that is climate-controlled and secure,
for the housing and operation of servers. These usually
restrict physical access to the servers, and have may
redundant systems to ensure continuous running.

Dependencies

To save time and effort, open source code can use
existing programs and libraries. These dependencies
need to be installed alongside the developers’ code for
the application to work.

Key Concepts

161

Hybrid private and public cloud

Many businesses already have data centres of their
own and run virtual workloads with technology from
VMWare, Citrix Xen and Hyper-V. Private cloud refers
to the ability of internal staff to order on-demand, vir-
tual servers, without the direct intervention of IT or
using an external public cloud.

Hypervisor

A system that runs virtual machines on a hardware
server. The three leaders are Xen by Citrix, VMWare
and Microsoft’s Hyper-V.

Infrastructure

The provision of all the components of the computer
ecosystem. Storage, memory, CPU and networking that
run the services to be consumed.

Infrastructure as Code (IaC)

A new concept that has arisen through the widespread
use of virtual machine sprawl blended with software

Who Moved My Servers?

162

programming techniques to manage the building of
servers, and control of the now virtualised network
equipment that provides the connections in between.

Infrastructure as a Service (IaaS)

The provisioning of Infrastructure via cloud services.

Kanban

Kanban is an inventory and scheduling system. Its
use in software development is like SCRUM; however,
the tasks are not timeboxed but subject to other meas-
ures and limits, like waiting task queue lengths, with
emphasis on throughput, through control of new tasks
coming into the queue and reducing defects.

Memory

A temporary store of data.

•	 Non-Volatile: Memory that is able to retain data
for long periods of time, like tape, disks, and
CD-ROMs

Key Concepts

163

•	 RAM: Random access memory, can read and
write

•	 ROM: Read-only memory

Network

A direct or indirect connection between computers. A
computer network enables the sharing of data between
computers. Early examples used modems to connect
over phone lines. This enabled the early email systems
to deliver mail. In offices, computers are often linked
using direct cables to a central point, enabling point to
point communications between any connected com-
puters. The central point often being interconnected
Network Switches.

Operational expenses (OpEx)

The ongoing cost for running a product, business or
system.

Pair programming

Often tasks can be complete faster and more effectively
when people work in pairs. The best example is that

Who Moved My Servers?

164

of making two flat-packed wardrobes. You could give
the task of assembling the wardrobes to two people
acting on one wardrobe each. They would no doubt
complete the task; however, you can probably see the
benefits of the two people working together to make
one wardrobe, then the other.

Pipeline

A defined process, usually on a continuous integration
server, that automates the building, testing and deploy-
ment of code to the infrastructure, so that it delivers
value to the product.

Rack

A specialised cabinet to house servers, network switches
and computer hardware, providing power and suffi-
cient airflow for cooling.

SCRUM

A framework for organising tasks with an emphasis on
software development. This is where teams of three to
nine work on given tasks in a timeboxed period known
as a sprint.

Key Concepts

165

Server

A computer that is connected to the network for the
purpose of sharing access to processes or data stored
on it. Examples include file servers for sharing files,
Web servers for serving web pages accessed by a web
browser, and gaming servers for a central point for
coordinating online games.

Source control

A key part of iterative development is the storing of
code, including application, service and infrastructure,
within a history and version-controlled repository. This
enables any team member to see what changed and
when, as well as being a useful view in terms of audit-
ing. Source control can also help when tracking down
defects introduced during the development process.

Test-driven development

This is the programming practice where the test code is
written first. A test simply ensures that given the spec-
ified input to a process or function, the given output is
correctly produced.

Who Moved My Servers?

166

The function or process is then created and checked
against the test. This approach means that during the
entire lifecycle of the process or function, you know
the state of the tests and have ensured that new func-
tionality can be added without breaking the current
working state.

Virtualisation

Due to the advances in CPU and the capacity of com-
puters, to improve efficiency and utilisation of hard-
ware (physical computers) virtualisation is a way of
running more than two logical computers in an isolated
way (they are not aware they are sharing) on the same
physical computer, and therefore share some of the
capacity of that machine. This provides cost savings
through better utilisation of hardware, space, cooling
and other physical requirements, while delivering
the same level of results from the virtual servers. The
hypervisor mediates access to the hardware resources.

167

The Author

Neil Millard is a success-
ful business entrepre-
neur, speaker and trainer,
passionate about per-
sonal development and
education.

Neil is well known as a
techie when it comes to

cloud and automated server infrastructures. He assists
businesses in embracing new technology such as the
cloud to move faster, become more automated and
respond to customers’ wants and needs.

Who Moved My Servers?

168

Having spent many years in the financial sector with cli-
ents such as Barclays, Lloyds and AXA, he is now on a
mission to share his wide sphere of financial knowledge
with the world. Neil has seen all sides of the personal
and business financial spectrum – from bankruptcy to
business ownership – working with enterprise servers
for blue chip companies for more than twenty years,
and managing them within virtual private clouds and
public cloud environments.

Recognised with Microsoft, HP and ITIL accreditations,
Neil has used his knowledge and experience to tame
manual deployments and upgrade methods, automate
monitoring and scaling applications, and deploy on-
demand Cloud Infrastructure as Code platforms. He has
also spoken at IT events such as the prestigious Puppet
Camp about dynamic cloud-based applications using
the latest technologies, including Puppet and Docker.

Neil has delivered continuous integration projects like
the blue-yellow-green upgrade of HP Vertica in Ama-
zon Web Services. Neil worked to ensure this database
system used for Artificial Intelligence required minimal
downtime (about fifteen minutes) to enable MoneySu-
perMarket to seamlessly upgrade the database version
without any data loss and deliver even more value to
their clients.

The Author

169

If your business is ready to embrace the fast-paced
world of cloud and be a fellow pioneer in the indus-
try – or you’ve already taken some steps – Neil will
guide you through the common pitfalls and lead you
and your business to the agile and stable platform to
scale with ease.

Find out more here:

:globe www.neilmillard.com
Linkedin: Neil Millard
Twitter: neil_millard

http://www.neilmillard.com
https://www.linkedin.com/in/neilmillard/
https://twitter.com/neil_millard

